•ϕ(T) = T(1, k)k∈ {2, . . . , n}
Sna1a2ϕ((1,2) = (a1, a2)
a b ϕ((1,3)) = (a, b) (1,2) (1,3) (a1, a2)
(a, b){a1, a2} ∩ {a, b} 6=∅a=a1
a3=b ϕ((1,3)) = (a1, a3)ϕ a26=a3
i∈ {2, . . . , n}ϕ((1, i)) (a1, ai)aiak
k < i i = 2 3 i > 3ϕ((1, i))
ϕ((1, k)) = (a1, ak) 2 ≤k≤i−1
(1, i) (1, k)i= 3
a1ϕ((1, i)) i2≥2i= 4
ϕ((1,4)) = (a2, a3)=(a1, a3)(a2, a1)(a1, a3) = ϕ((3,1)(1,2)(1,3))
(1,4) = (3,1)(1,2)(1,3)
a1ϕ((1, i)) (a1, ai)ϕ ai
akk < i
•n{1, . . . , n}a1, . . . , anϕ((1, i)) =
(a1, ai) 2 ≤i≤n σ i ∈ {1, . . . , n}ai
σ◦(1, i)◦σ−1= (a1, ai)
ϕ ϕσ:s7→ σ◦s◦σ−1
(1, i) 2 ≤i≤n ϕ (1, i)
Snϕ=ϕσ