DS6 : Mécanique – corrigé 1 Vol en montée 2 Vol en virage

         
DS6 : Mécanique – corrigé
Exercice 1         
1 Vol en montée
  

A=p
G
~
P
~
Fp
~
Fm
~
Ft
                 
   ~
P+~
Fm+~
Fp+~
Ft=~
0
          (Ox0) (Oz0) 
(Ox0) : Ft+mg  A=Fm
(Oz0) : mg  A=Fp
   Fp=1
2ρSv2Cp       v     
v=s2mg  A
ρSCp
       ~
F        ~v  P=~
F .~v    
Pm=k~
Fmkv
     
[Pm0] = "mg Ct
Cps2mg
ρSCp#=×∅×s
 =q    = 
 [Pm0] =p=  =
   f0= 30  Pm0= 
        
Pm' Pm0(1 + f0A)
   A=1
f0Pm
Pm01'· ',
   vz=v A=q2mg  A
ρSCp A     A    vz=,  
     η=Fp
mg =(A)    η < 1         
  
2 Vol en virage
  
  
         
~urφ
G
~
P
~
Fp
           ~a =v2
R~ur
          
~
P+~
Fm+~
Fp+~
Ft=mv2
R~ur
          ~ur ~uz 
(~ur)Fp φ=mv2
R
(~uz)Fp φ=mg
    R=v2
g φ
      η=Fp
mg =1
 φ
    η < 2  φ > 1
2  φ <      φ < 3  R > v2
g3
Exercice 2    
          ~
N     
α
~
P
~
F1
~
N~
T
β
         à vitesse constante         
          
        ~ex          F1+T βP α= 0
 T=F1+P α
 β    T= 
          ~
P    ~
N     
  ~
F2
~
N
~
P
~
F2
          Ox        m¨x=F2  
 
        ˙x(t) = ˙x(0)F2
mt       
x(t) = ˙x(0)tF2
2mt2+x(0)              tf=m˙x(0)
F2  
  d=x(tf)x(0) = m˙x2(0)
2F2   d', 
                     
                     
                  
               

            
                
  F3+mg  α0= 0  F3=mg  α0=kv2
l    
 vl=qmg  α0
k', /α0
~
P
~
F1~
N
  
         
             ~
P
       x y  ¨x= 0  ¨y=g
                 x(t) = v0xt
 y(t) = v0yt1
2gt2  v0x=v0 γ v0y=v0 γ
               F   y(tf) =   =v0ytf1
2gt2
f  
 tf',      D=x(tf) = v0xtf' 
Exercice 3       
          poids du hamsterle poids de la roue   réaction de l’axe de rotation  
                 
R
Pa
F
Pr
          L=Jω
        dL
dt =J
dt =M(~
Pa) = mgR  θ0       
                 
dt =mgR  θ0
J
                 ω(t) = mRg  θ0
Jt
       Ec(t) = 1
2Jω(t)2  EC(t) = (mRg  θ0)2
2Jt2
       v      ω=v
R       
   t=Jω
mRg  θ0', 
        Ec=1
2Jω2= 
                     
              θ0= 0
                      
     mRg  θ0 mRg  θ0Γ
                   
                    
       mRg  θ0Γ= 0   θ0= Γ
mRg
             ω0=v0
R
         son énergie cinétique est nulle         
  
                 Ep=mgh =mgR
        EcR =1
2Jω2
0
              Em=mgR +1
2Jω2
0
                     
       ω0 ω1        
                EcH =1
2mv2=1
2mR2ω2
1
           
1
2Jω2
0mgR =1
2Jω2
1mgR +1
2mR2ω2
1 ω1=ω0sJ
J+mR2
  
         
                 
Em=1
2Jω2
| {z }
EcR
+1
2mR2ω2
| {z }
EcH
mgR  θ
| {z }
Ep
=1
2(J+mR2)ω2mgR  θ
         
1
2(J+mR2)ω2mgR  θ=1
2(J+mR2)ω2
1mgR  ω=sω2
12mgR(1  θ)
J+mR2
              ~
P=m~g        
   ~
K              
                ~ar=
2~er           
~a =Rω2
12mgR(1  θ)
J+mR2~er
               θ=π      ~er 
 
mg K=mar=mR ω2
14mgR
J+mR2 K=mR ω2
14mgR
J+mR2mg
       K < 0           
                 ω0     
                ω0   R
              J      
Exercice 4   
        m     
    ~
P=m~g    ~
T      
 ~
T=m~g
                 h(t) =
rθ(t)
       m     h(t)   
  Oz       m¨
h(t) = Tmg
          
J˙ω=M(~
T) = rT. 
        T=m(gr¨
θ)   
       J˙ω=mr(gr˙ω)    ˙ω
α= ˙ω=mrg
J+mr2
 a=rα =mr2g
J+mr2 |a|=g1
1 + J/mr2< g   
         g
 a',  α',  
            
         
          m    Ec=
mgh
~e
r
θ(t)
M
m
z
h
0
~
Tc
~
Tm
~
P
||~
Tm|| =||~
Tc|| =T
  
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !