Contrôle IUP GCI2 Probabilités et statistiques
2002
Calculatrices autorisées, documents interdits sauf une feuille A4 au choix de l’étudiant, et une table
de valeurs.
Exercice 1: On suppose que l’erreur commise par une balance de laboratoire se modélise bien à l’aide
d’une variable aléatoire de loi normale de paramètres 0 et 0,1 g (N(0; 0,1)).
1. On pèse un corps dont la masse exacte est 37,54 g, quelle est la probabilité que la mesure
donnée par la balance soit comprise entre 37,5 et 37,6 grammes. Puis entre 37 et 38 grammes.
2. On pèse 20 billes de masse réelle 12,05 grammes, quelle est la probabilité que la moyenne
des 20 pesées soit inférieure à 12 grammes.
3. Lors d’une expérience, on veut éliminer les pièces dont la masse réelle dépasse 32,55
grammes. Quitte à supprimer trop de pièces, comment peut-on éliminer 95% des pièces
dépassant 32,55 grammes, à l’aide de la balance de laboratoire. Lors de la rédaction on fera
bien attention de distinguer masse réelle et masse mesurée.
Exercice 2: On suppose que la variable aléatoire Xsuit une loi uniforme sur l’intervalle [A;A], et que
les variables aléatoires X1,X2, . . . ,Xnsont indépendantes et de même loi uniforme sur [A,A].
Enfin on pose Y=max(|X1|,...,|Xn|).
1. Rappeler la densité de Xet la représenter.
2. Calculer l’espérance et la variance de X.
3. Montrer que la fonction de répartition de Yest la fonction
FY(t) = 0 si t < 0
FY(t) = tn
Ansi t[0,A]
FY(t) = 1 si t > A
4. Calculer la densité de Ypuis son espérance.
5. Déterminer un réel αtel que la variable aléatoire Z=αY soit d’espérance A.
6. Déterminer la variance de Z.
7. A l’aide de l’inégalité de Bienaymé Tchebychev (pour toute variable aléatoire Uadmettant
une variance t > 0P(|UE(U)| ≥ t)varU
t2), déterminer un npour lequel la probabilité
que Zsoit comprise entre 9
10 Aet Asoit supérieur à 95%.
Exercice 3: On veut comparer la résistance en compression de deux bétons après un passage de 20
heures dans un four à 200C, ceci afin de modéliser un accident nucléaire dans une centrale, le
premier béton, un BHP (70 MPa) donne sur 7 éprouvettes les résultats suivants: 43,8; 44,2; 45,3;
45,4; 45,4; 45,8; 45,9 MPa le second béton un BHP à granulats légers (60 MPa) donne les résultats
suivants: 45,8; 45,9; 46; 46,8; et 46,9 MPa.
1. Déterminer la moyenne et l’écart type de la résistance en compression de chacun des
échantillons de béton après passage au four (m11et m22).
2. On fait l’hypothèse que les mesures en compression d’un béton suivent une loi normale, à
l’aide d’un test statistique essayer de répondre à la question suivante: après passage au four
les deux bétons ont-ils la même résistance en compression?
1
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !