Mécanique - C6 PCSI A
Théorème du moment cinétique
1 et 2 pour lundi 29 février 3 et 4 pour mardi 1er mars
1. Rotation d'une masse attachée à un fil Jegoux-Quemeneur
On fait tourner une sphère assimilable à un point matériel de masse m = 200 g sur un cercle horizontal au bout d’un fil de
longueur l0 = 2 m à une vitesse constante v = 1 m.s−1.
1) Déterminer son moment cinétique par rapport de l’axe de rotation.
2) On tire brusquement le fil, de manière à réduire son rayon à l1 = 1 m : que devient la vitesse de la sphère ?
Rep :
2. Pendule sur un plan incliné Le Bos-Lannuzel
Un pendule simple est constitué d’un point M de masse m attaché à un fil de masse
négligeable, de longueur L. L’autre extrémité du fil est accrochée à un point O fixe.
L’ensemble peut se déplacer sans frottement sur un plan incliné faisant un angle α avec le plan
horizontal.
1. En repérant la composante du poids incluse dans le plan (et donc orthogonale à l’axe de
rotation), calculer son moment par rapport à l’axe de rotation.
2. En appliquant le TMC par rapport à cet axe, trouver l’équation différentielle du mouvement
et la période des petites oscillations.
3. On lance le pendule depuis le point O' avec une vitesse v0. Déterminer l’angle maximal
atteint, en supposant que l’on reste dans le domaine des petites oscillations.
3. Pendule conique Citarel-André
On considère une masse m attachée à l’extrémité d’un fil, inextensible de
longueur ℓ, sans masse, dont l’autre extrémité est fixée en un point O1. La masse repérée
grâce au point M est astreinte à tourner autour de l'axe Oz à la vitesse angulaire constante ω
dans le sens trigonométrique dans le référentiel d'étude R(Ox,Oy,Oz) supposé galiléen.
1) Exprimer le moment cinétique
.
2) Appliquer le théorème du moment cinétique en O1, en déduire l'angle d'inclinaison
constant α du pendule avec l'axe Oz en fonction de ℓ, ω et de l'intensité de la pesanteur g.
4. Oscillations d'une masse Nicolas-Grannec
Un point matériel M de masse m est relié à un fil inextensible de longueur L et
de masse négligeable, ainsi qu’à un ressort horizontal de raideur k et de
longueur au repos l0. Le fil est vertical lorsque le point matériel
se trouve au repos en O′1.
On suppose des petites oscillations quasi horizontales du point M tel que O'1M
<< L.
La position du point M est repérée par l'angle d'inclinaison θ(t) du pendule par
rapport à la verticale (θ(t) est supposé faible)
Établir l’équation du mouvement en utilisant le théorème du moment cinétique
appliqué en O1. En déduire la période T0 des petites oscillations autour de la
position d'équilibre.
Rep :