Partie I : Définition et propriétés
p, n q P =
p
P
k=0
akXkQ=
q
P
k=0
bkXk
C[X]apbq6= 0 P Q Res(P, Q)
Res(P, Q) =
a0b0
a1b1
b0
apa0b1
a1bq
apbq
.
p+q q
P p Q
P= 1 + 2X+ 3X2Q= 4 + 5X+ 6X2+ 7X3
Res(P, Q) =
10040
21054
32165
03276
00307
.
Res(P, Q)MP,Q
Res(P, Q) = detMP,Q.
E=Cq−1[X]×Cp−1[X]F=Cp+q−1[X]u E F
(A, B)∈E u(A, B) = P A +QB
1. Res(P, Q) Res(Q, P )
2. Cas où uest bijective.
a) u
b) u P Q
c) P Q Ker u u
3. Matrice de u.
B= ((1,0),(X, 0),...,(Xq−1,0),(0,1),(0, X),...,(0, Xp−1)) EB0=
(1, X, . . . , Xp+q−1)F
a) uB B0
b) Res(P, Q)6= 0 P Q