Chapitre IX
Lois de probabilité à densité
Extrait du programme :
I. Lois de probabilité à densité
1. Variable aléatoire à densité
Dans de nombreux domaines, on est amené à étudier des variables aléatoires pouvant prendre, du
moins théoriquement, toute valeur d’un intervalle I de .
Ces variables aléatoires sont dites continues.
Exemple : On veut définir la variable aléatoire X qui, a tout téléviseur, associe sa
durée de bon fonctionnement exprimée en heures.
Cette durée peut prendre toute valeur de l’intervalle I = [0 ; 50000]. On va alors
chercher à calculer des probabilités de la forme P X   ou P X  .
Pour cela, on utilise une fonction f définie sur I, donc cf est la courbe représentative
dans un repère orthogonal : la probabilité Pa X b est définie comme l’aire
(exprimée en unités d’aire) du domaine compris entre l’axe des abscisses, la courbe
cf et les droites d’équations xa et xb.
Définitions :
On appelle fonction de densité de probabilité sur l’intervalle I, toute fonction f finie, continue et
positive sur I telle que l’intégrale de f sur I soit égale à 1, et
Une variable aléatoire à densité X sur un intervalle I est définie par la donnée d’une fonction de
densité de probabilité f définie sur I. La probabilité pour que X appartienne à un intervalle [a ;b] de I
est égale à l’aire sous la courbe de f sur [a ;b].
Pa X b
a
b ftdt
On en déduit que le domaine compris entre la courbe représentative de f et l’axe des abscisses a pour
aire P(XI) c’est-à-dire 1.
Propriétés : Pour tous réels a et b appartenant à l’intervalle I :
(1) PXa)
a
a ftdt=0
(2) Pa X b P a X b Pa X b P a X b
2. Espérance mathématique
Définition : Soit X une variable aléatoire continue de fonction densité f sur l’intervalle [a ;b], alors
l’espérance mathématique de X est le réel défini par :
EX =
a
b tftdt
Point méthode 19 : Utiliser une loi à densité
La production quotidienne X d’un produit en tonnes est une variable aléatoire continue qui
prend ses valeurs dans l’intervalle [0 ;10] avec la densité de probabilité f définie par :
fx , 
x x
1. Vérifier que f est bien une densité de probabilité sur [0 ;10]
2. a. Calculer les probabilités des événements A : « X 7 » et B : « la production quotidienne
dépasse 6 tonnes ».
b. Calculer PB(A) à 0,001 près.
3. Combien peut-on espérer produire en moyenne de ce produit ?
Solution :
1. Il faut vérifier :
- Que f est bien continue et positive sur I
- Que l’intégrale de f sur [0 ;10] vaut bien 1
f est une fonction polynôme du second degré, donc f est continue sur [0 ;10].
Pour tout réel x, fx , 
x x ,x x ,x ,x
Donc les racines de f sont 0 et 10.
Par conséquent, f est positive entre les racines (car a= 0,006 négatif), soit f positive sur [0 ;10].
De plus,
 ,xx²dx = 0,006
 xx²dx = 0,006  
= 0,006

0 =1
f est donc continue, positive sur [0 ;10] et
 ftdt = 1 c’est donc bien une fonction densité.
2. a. P(A)= P (X 7) =
fxdx = F(7 F(0)=0,006
 
= 0,784
P(B)= P (X > 6) = 1 P(X 6) = 1
fxdx = 1 ( )
FF
= 10,006 ( )
  = 0,352
b. PB(A) = PBA
PB = PX et X 
PB = P X 
PX  =
,
fxdx = , ,
,
0,386
II. Loi uniforme sur [a ;b]
1. Définition et propriétés
Définition : a et b désignent deux nombres réels distincts.
Dire qu’une variable aléatoire X suit une loi uniforme sur l’intervalle [a ;b] signifie que la densité de
probabilité de la loi X est une fonction constante sur [a ;b].
Propriété : la densité de probabilité de la loi uniforme sur [a ;b] est la fonction f définie sur [a ;b] par :
fx
b a
Démonstration : On sait que l’aire sous la courbe entre a et b soit être égale à 1
donc : si fx k on a :
kb a donc k
b a
CQFD
Propriété : X est une variable aléatoire qui suit la loi uniforme sur [a ;b].
Pour tout intervalle [c ;d] inclus dans [a ;b] on a : P(c X d ) = d c
b a
Démonstration : P(c X d) =
c
d fxdx =
c
d
badx =
ba
c
d dx =
ba [ ]
xd
c = dc
ba CQFD
Remarques :
Par convention, choisir un nombre au hasard dans un intervalle [a ;b] c’est le choisir selon la
loi uniforme sur l’intervalle [a ;b].
En particulier, pour la loi uniforme sur [0 ;1] et pour tous nombres réels c et d de [0 ;1] :
P(c X d) = dc
 = dc
Donc la probabilité de choisir un nombre au hasard entre c et d est égale à la longueur de
[c ;d].
2. Espérance
Propriété : X est une variable aléatoire qui suit la loi uniforme sur [a ;b].
Son espérance est : EX)= ab
Démonstration : On sait que l’espérance d’une variable aléatoire X de densité f sur [a ;b] est donnée
par : EX =
a
b tftdt
Or ici, X suit une loi uniforme donc fx
b a
Ainsi, E(X)=
ba
a
b tdt =
ba
t²b
a =
b a
b
a
b a( )
b a b ab a
b a b a
CQFD
Point méthode 20 : Calcule une probabilité avec une loi uniforme
Caroline a dit qu’elle passait voir Julien à un moment quelconque entre 18h30 et 20h45. Quelle est la
probabilité qu’elle arrive pendant le feuilleton préféré de Julien qui dure de 19h à 19h30 ?
Solution : Choisir l’heure d’arrivée de Caroline, c’est choisir un nombre au hasard dans [18,5 ;
20,75]. Par convention, la loi de X est la loi uniforme sur cet intervalle.
X est la variable aléatoire égale à l’heure d’arrivée de Caroline chez Julien. Elle prend ses valeurs dans
l’intervalle [18,5 ;20,75].
X suit une loi uniforme sur [18,5 ; 20,75] donc :
P(19 X 19,5) = ,
,, = ,
, =
La probabilité que Caroline arrive pendant le feuilleton est de
.
III. Loi normale centrée réduite
1. Définition et représentation graphique
L’observation de représentations graphiques de certaines lois binomiales conduit à une nouvelle loi
appelée loi normale centrée réduite.
Définition : La loi normale centrée réduite notée n(0,1) est la loi continue ayant pour densité de
probabilité la fonction f définie sur par : fx
ex
Représentation graphique :
La courbe représentative cf de f dans un repère orthogonal est une courbe « en cloche », symétrique
par rapport à l’axe des ordonnées, appelée courbe de Gauss.
2. Premières propriétés
Propriétés : Soit X une variable aléatoire suivant une loi normale centrée réduite :
(1) f est continue donc : si c d alors P(c X d) =
c
d
ex
dx
Remarque : On ne connait cependant pas de primitive à une telle fonction, on ne pourra donc pas
calculer de façon exacte la probabilité. On se servira de la calculatrice pour en déterminer une valeur
approchée.
(2) L’aire totale sous la courbe est égale à 1 ; elle représenta la probabilité P(X]-;+[)
(3) La courbe étant symétrique par rapport à l’axe des ordonnées, on a donc : P(X 0) = 0,5
(4) Pour les mêmes raisons de symétrie, pour tout réel u : P(X -u) = P( X u) = 1P(X u)
(5) Cas particuliers :
- P(-1 X 1)
0,68
- P(-1,96 X 1,96) 0,95
- P(-2 X 2)
0,954
- P(-3 X 3)
0,997
(6) Le fait d’avoir centré et réduit nous permet
x
f x

0 0
1 / 8 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !