Chapitre 27 : Puissances 2
1. Dénition de a1
Par exemple, on souhaite dénir 31.
On veut cependant que les propriétés restent vraie.
Par exemple, on doit avoir : 31 × 35 = 35+1 = 36
Mais, on aussi : 3 × 35 = 35+1 = 36
On doit donc nécésseraiment avoir : 31 = 3
D’où la dénition suivante :
Dénition : Pour tout nombre a, on pose a1 = a
2. Dénition de a0
Par exemple, on souhaite dénir 30.
On veut cependant que la propriété 1 reste vraie.
Par exemple, on doit avoir : 30 × 35 = 30+1 = 35
On doit donc nécesseraiment avoir : 30 = 1
Dénition : Pour tout nombre a non nul, on pose : a0 = 1.