RT
x∈Rx−x= 0 = 0 ×T k ∈Zk= 0 x−x=kT xRTx
RT
x, y ∈RxRTy k ∈Zx−y=kT
y−x=−kT = (−k)T k0∈Zk0=−k y−x=k0T yRTxRT
x, y, z ∈RxRTy yRTz k, k0∈Zx−y=kT
y−z=k0T
x−z= (x−y)+(y−z) = kT +k0T= (k+k0)T.
k00 ∈Zk00 =k+k0x−z=k00 T xRTzRT
x∈RyC(x)xR0xR0y
k∈Zx−y=k×0=0 x=y y x
y=xC(x)⊂ {x}xR0x x ∈ C(x){x}⊂C(x)
C(x) = {x}
x, y ∈Rcos(x) = cos(y) sin(x) = sin(y)x y
2π k ∈Zx=y+ 2kπ x −y=k(2π)
xSy⇐⇒ ∃k∈Z, x =y+ 2kπ ⇐⇒ xR2πy.
S=R2πS
a= 48 b= 35
a b b
a=b×1 + 13,
b= 13 ×2 + 9,
13 = 9 ×1 + 4,
9=4×2 + 1 ,
4 = 1 ×4.
13 = a−b,
9 = b−2×13 = b−2(a−b) = 3b−2a,
4 = 13 −9 = (a−b)−(3b−2a) = 3a−4b,
1 = 9 −4×2 = (3b−2a)−2(3a−4b) = 11b−8a .
a∧b= 1
−8a+ 11b= 1 (x0, y0)=(−8,11)
(x0, y0)
(x, y)
48x+ 35y= 1
48x0+ 35y0= 1
48(x−x0) + 35(y−y0)=0⇐⇒ 48(x−x0) = 35(y0−y).(?)
48(x−x0)k∈Z
x−x0= 35k x =x0+35k(?) 48×
35k=
35(y0−y)y=y0−48k
(x, y)k∈Zx=−8 + 35k y = 11 −48k
(x, y) (−8 + 35k, 11 −48k)k∈Z
48x+ 35y= 48(−8 + 35k) + 35(11 −48k) = (48 ×(−8) + 35 ×11) = 1,
(−8,11) (x, y)
{(−8 + 35k, 11 −48k), k ∈Z}
M(x, y, z)P−−→
AM ~u
−−→
AM.~u = 0
48(x+ 11) + 35(y−35) + 24(z+ 13) = 0.
P48x+ 35y+ 24z−385 = 0
P~u(48,35,24) P0z−16 = 0
~n(0,0,1) ~u ~n
D
48x+ 35y+ 24z−385 = 0
z−16 = 0 ⇐⇒ 48x+ 35y+ 24 ×16 −385 = 0
z−16 = 0 ⇐⇒ 48x+ 35y= 1
z= 16.