AB= (AB)\(AB)=(AB)(AB)c,\,
= (AB)(AcBc), ,
= (AAc)(ABc)(BAc)(BBc),∩ ∪,
=∅ ∪ (ABc)(BAc)∪ ∅,
= (ABc)(BAc) = AB
P(E) (A, B, C)∈ P(E)A∆(BC)=(AB)∆C
AA= (AA)\(AA) = A\A==AA
A= (A∪ ∅)\(A∩ ∅) = A\∅ =A=A
P(E)P(E)P(E)
A, B ∈ P(E)AB=BA
A∈ P(E)A=AA AA=
∆ (P(E),∆)
=B=C=AB=AC
=AB=AC=B=C AB=AC
B=C
BBC x B x A x /A
xA x AB x /AB AB=AC x /AC x A
xC x C A AC
x /A x B x AB AB=AC x AC x /A
xC
xC B C
BB C C B B =C
AB=AB A =A x A
xB x A x AB x /AB
x /B x /AB x AB
x A A =A B
B=
P=X45X3+7X25X+6 X2+1
(X4+X2)X25X+6
5X3+6X25X+6
(5X35X)
6X2+6
(6X2+6)
0
P= (X2+ 1)Q Q =X25X+ 6 0
P P = (X2+ 1)(X25X+ 6)
X2+ 1 iiC[X]X2+ 1 = (Xi)(X+i)R[X]X2+ 1
X25X+ 6 ∆ = 1 (5 1)/2 = 2 (5 + 1)/2=3
R[X]C[X]X25X+ 6 = (X2)(X3)
P
C[X]P= (Xi)(X+i)(X2)(X3)
R[X]P= (X2+ 1)(X2)(X3)
RT
xRxx= 0 = 0 ×T k Zk= 0 xx=kT xRTx
RT
x, y RxRTy k Zxy=kT
yx=kT = (k)T k0Zk0=k yx=k0T yRTxRT
x, y, z RxRTy yRTz k, k0Zxy=kT
yz=k0T
xz= (xy)+(yz) = kT +k0T= (k+k0)T.
k00 Zk00 =k+k0xz=k00 T xRTzRT
xRyC(x)xR0xR0y
kZxy=k×0=0 x=y y x
y=xC(x)⊂ {x}xR0x x ∈ C(x){x}⊂C(x)
C(x) = {x}
x, y Rcos(x) = cos(y) sin(x) = sin(y)x y
2π k Zx=y+ 2kπ x y=k(2π)
xSy⇒ ∃kZ, x =y+ 2kπ xR2πy.
S=R2πS
a= 48 b= 35
a b b
a=b×1 + 13,
b= 13 ×2 + 9,
13 = 9 ×1 + 4,
9=4×2 + 1 ,
4 = 1 ×4.
13 = ab,
9 = b2×13 = b2(ab) = 3b2a,
4 = 13 9 = (ab)(3b2a) = 3a4b,
1 = 9 4×2 = (3b2a)2(3a4b) = 11b8a .
ab= 1
8a+ 11b= 1 (x0, y0)=(8,11)
(x0, y0)
(x, y)
48x+ 35y= 1
48x0+ 35y0= 1
48(xx0) + 35(yy0)=048(xx0) = 35(y0y).(?)
48(xx0)kZ
xx0= 35k x =x0+35k(?) 48×
35k=
35(y0y)y=y048k
(x, y)kZx=8 + 35k y = 11 48k
(x, y) (8 + 35k, 11 48k)kZ
48x+ 35y= 48(8 + 35k) + 35(11 48k) = (48 ×(8) + 35 ×11) = 1,
(8,11) (x, y)
{(8 + 35k, 11 48k), k Z}
M(x, y, z)P
AM ~u
AM.~u = 0
48(x+ 11) + 35(y35) + 24(z+ 13) = 0.
P48x+ 35y+ 24z385 = 0
P~u(48,35,24) P0z16 = 0
~n(0,0,1) ~u ~n
D
48x+ 35y+ 24z385 = 0
z16 = 0 48x+ 35y+ 24 ×16 385 = 0
z16 = 0 48x+ 35y= 1
z= 16.
MD(x, y, z) (x, y, z)
z= 16 48x+ 35y= 1 (x, y)kZ
(x, y) = (8 + 35k, 11 48k)k[100; 100]
k(x, y, z)=(8 + 35k, 11 48k, 16)
0 (8,11,16)
1 (27,37,16)
2 (62,85,16)
1 (43,59,16)
D(8,11,16) MD
(x, y, z)OM =px2+y2+z2
A=X2+X+ 1 j= exp(2/3) = 1/2 + i3/2¯
j
j A A(j) = 0 1 + j+j2= 0 j2=1j
j
aj +b=cj +da 1
2+i3
2!+b=c 1
2+i3
2!+da
2+b+i 3a
2!=c
2+d+i 3c
2!
a
2+b=c
2+d
3a
2=3c
2
(a=c
b=d,
P A R (R)<(A) (A) = 2 R
1R=αX +β α, β RA P
P A P =AQ +R R =αX +β Q
j P (j) = A(j)Q(j) + R(j)A(j)=0 j A
P(j) = jn+jm+ 1 R(j) = αj +β jn+jm+ 1 = αj +β
n3Z0 1 2
n= 3k n = 3k+ 1 n= 3k+ 2 k
jn+jm+ 1 j3= 1 j2=j1
a b jn+jm+ 1 = aj +b
α β jn+jm+ 1 = αj +β
aj +b=αj +β α =a β =b
R=αX +β
n= 3k m = 3k0+ 2
jn+jm+ 1 = j3k+j3k0+2 + 1 = (j3)k+ (j3)k0×j2+ 1 = 1k+ 1k0×j2+ 1 = 1 + (j1) + 1 = j+ 1,
αj +β=j+ 1 α=1β= 1 R=X+ 1
n m jn+jm+ 1 α β R
3k3k03 0 3 3
3k3k0+ 1 j+ 2 1 2 X+ 2
3k3k0+ 2 j2+ 2 = j+ 1 1 1 X+ 1
3k+ 1 3k0j+ 2 1 2 X+ 2
3k+ 1 3k0+ 1 2j+ 1 2 1 2X+ 1
3k+ 1 3k0+ 2 j2+j+ 1 = 0 0 0 0
3k+ 2 3k0j2+ 2 = j+ 1 1 1 X+ 1
3k+ 2 3k0+ 1 j2+j+ 1 = 0 0 0 0
3k+ 2 3k0+ 2 2j2+ 1 = 2j1212X1
A P R P A
R n = 3k+ 1 m= 3k0+ 2 n= 3k+ 2 m= 3k0+ 1
A|Pn1[3]
m2[3] n2[3]
m1[3]
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !