n∈N∗
n!=1×2×3× · · · × (n−1) ×n n
0 ! = 1 n! (n+ 1)! = n!×(n+ 1)
n
p
n p
k∈ {0,1, . . . , n}k
nn
kk n
n
k=n!
k! (n−k)! =n(n−1) . . . (n−k+ 1)
k!.
n
kk
n k
n
n∈Nx, y ∈R
(x+y)n=n
0xn+n
1xn−1y+· · · +n
n−1xyn−1+n
nyn=
n
X
k=0 n
kxkyn−k
=n
0yn+n
1xyn−1+· · · +n
n−1xn−1y+n
nxn=
n
X
k=0 n
kxn−kyk.
n
k
k, n ∈Nk6nn
n−k=n
k
n
0=n
n= 1 n
1=n
n−1=nn
2=n
n−2=n(n−1)
2
k, n ∈Nk6n−1n
k+n
k+ 1=n+ 1
k+ 1
n
kk n
aa
a
k
n0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 18285670562881
p, q ∈Np6q up, up+1, . . . , uq−1, uq
q
Y
i=p
ui=up×up+1 × · · · × uq−1×uq.
n! =
n
Y
i=1
iePn
i=1 ui=
n
Y
i=1
euiu1, . . . , un>0 ln n
Y
i=1
ui!=
n
X
i=1
ln ui
n≥2 cosn(x) sinn(x)
cos(kx) sin(kx)k∈N∗
sin3(x)=eix−e−ix
2i 3
sin3(x) = 1
−8i(eix)3+ 3(eix)2(−e−ix) + 3(eix)(−e−ix)2+ (−e−ix)3
=−1
8ie3ix−3eix+ 3e−ix−e−3ix=−1
8i2i sin(3x)−3×2i sin(x)
=−1
4sin(3x) + 3
4sin(x).
n≥2 cos(nx) sin(nx)
cosk(x) sinl(x)k, l ∈N
cos(3x) = <eei(3x)sin(3x) = =mei(3x)
e3ix=eix3= (cos x+ i sin x)
3= cos3x+ 3 cos2x(i sin x) + 3 cos x(i sin x)2+ (i sin x)3
=cos3x−3 cos xsin2x+ i 3 cos2xsin x−sin3x.
cos(3x) = cos3x−3 cos xsin2x= cos3x−3 cos x(1 −cos2x)
= 4 cos3x−3 cos x,
sin(3x) = 3 cos2xsin x−sin3x= 3(1 −sin2x) sin x−sin3x
= 3 sin x−4 sin3x.