1
4
3
12
9
Les quotients (5)
I. Quotients égaux
bbk
aak
et
bbk
aak
On ne change pas un quotient de deux nombres relatifs en multipliant ou
en divisant numérateur et dénominateur par un même nombre non nul.
Exemple : simplification de fractions
60
45 =12 5
9 5= = 4 3
3 3=
Fraction
irréductible
Egalité des produits en croix
ac
bd
Si alors a d = b c
2
II. Somme de quotients de nombres relatifs
1/ Si les dénominateurs sont les mêmes
a b a b
=
k k k
(k 0)
a b a b
=
k k k
On additionne ou on soustrait les numérateurs, on ne touche pas aux
dénominateurs.
Exemples :
-7 9
A +
55

-7 + 9
5
2
5
 
9,3 6,1
4

77
20

9,3 6,1
4
15,4
4
154
40
2/ Si les dénominateurs ne sont pas les mêmes
On doit d’abord réduire les quotients au même dénominateur.
3
Exemples :
75
C84
 
272
5
84

7 10
88

7 10
8
17
8
13 17
D18 24
 
13 17
-
43
=
18 2434


52 51
72 72

1
72
18 = 3×6
24 = 4×6
DC = 18×4
= 24×3
= 72
52 51
72
III. Produit de deux quotients
32
25

 
1,5 0,4 
0,6 =
6
10

 
32
25

6
10
Pour multiplier deux nombres relatifs en écriture fractionnaire, on
multiplie les numérateurs entre eux et les dénominateurs entre eux.
a c a c
=
b d b d
Conseil : chercher le signe du produit et simplifier si possible avant de
multiplier
4
REMARQUE
a k a
k = =
b 1 b

k a =
1 b
k a
b
a k a
k =
bb
Exemple :
2
3 =
7
6
7
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !