o1
F(x) = 0 F=dV/dx
V(x) = . V (x)=0 V(0) = V(L)+
ˆ
Hψ =Eψ ˆ
H=ˆp2
2m+V(x)
ˆp=i~d/dx
ˆ
Hψ =~2
2m
d2ψ
dx2=Eψ : 0 < x < L
ψ(0) = ψ(L) = 0
ψn(x) = Cnsin πn x
L, n = 1,2,3. . .
Cn
1 = kψk ⇔ 1 = C2
nZL
0
sin2πn x
Ldx
=C2
nZL
0
1
21cos 2πn x
Ldx =C2
n
L
2
Cn=q2
L
ˆ
Hψn=~2
2m
d2ψn
dx2=~2
2mπn
L2ψn=Enψn
En=~2
2mπn
L2.
ˆ
Id =R|xihx|dx
hψ|ψi=Zhψ|xihx|ψidx =Z|ψ(x)|2dx
=C2Zexp (xx0)2
σ2!dx =C2Zexp x2
σ2dx =C2σπ
kψk2=hψ|ψi= 1 C= 1/πσ21/4
P(x) = |ψ(x)|2=C2exp (xx0)2
σ2!
x0σ P (x)dx
[x, x +dx]
P(x)
˜
ψ(p) = hp|ψi=Zhp|xihx|ψidx
=1
2π~Zexp ipx
~Cexp ip0x
~exp (xx0)2
2σ2!dx
˜
ψ(p) = Cσ
~exp ip0x0
~exp ipx0
~exp (pp0)2
2 (~)2!
˜
P(p) =
˜
ψ(p)
2=C2σ2
~exp (pp0)2
(~)2!
p0~˜
P(p)dp
[p, p +dp]
σ→ ∞ 1
C2π~ψ(x)hx|p0i=1
2π~exp (ip0x/~)
|p0iσ01
Cσ2πeip0x0/~ψ(x)
hx|x0i=δ(xx0)|x0i
hxi=ZxP (x)dx =Zxhψ|xihx|ψidx =hψ|ˆi
h.i
(∆x)2=D(x− hxi)2E=Dx2+hxi22xhxiE=x2+hxi22hxihxi=x2− hxi2
hxi=x0,hpi=p0
x2=σ2
2+x2
0x=σ
2p=1
2(~) ∆xp=~/2
xp~
2
xv~
2m
xv t = 0
xv
vx
(~/m) = 10 cm2/s t = 0 x1cm v~
2mx
0.5cm/s x1cm t = 2s.
(~/m)1018 m2/s x'109m
v'109m/s
m'103
x(0) ∆v(0) ~
2m1032m2/s
x(0) '1016m, v(0) '1016m/s t 16s. x(t)
1m.
x(TE) = eTEx(0) = 1m, v(TE) = eTEv(0) = 1m/s,
a0= 1m2/s
a0= ∆x(TE) ∆v(TE) = e2TE~
2m
TE=τ
2log a02m
~= 0.5 log 1032'37
x(TE)
i~(t)
dt =ˆ
Hψ (t)
hp|ˆ
H|pi=H(p)|pi
i~dhp|ψ(t)i
dt =hp|ˆ
Hψ (t)i=hˆ
Hp|ψ(t)i=H(p)hp|ψ(t)i
i~d˜
ψ(p, t)
dt =H(p)˜
ψ(p, t)
˜
ψ(p, t) = iH(p)t
~˜
ψ(p, 0)
V(x)
˜
ψ(p, t)p'p0p'p0
H(p)'H(p0)+(pp0)H
p p=p0
=p2
0
2m+ (pp0)p0
m=E0+ (pp0)v0
E0=H(p0) = p2
0
2mv0=p0
m
ψ(x, t) = hx|ψ(t)i=Zdp hx|pihp|ψ(t)i=Zdp eipx
~˜
ψ(p, t)
=Zdp eipx
~iH(p)t
~˜
ψ(p, 0)
=iE0t
~ip0v0t
~Zdp eip(xv0t)
~˜
ψ(p, 0)
=i(p0v0E0)t
~ψ(xv0t, 0)
|ψ(x, t)|=|ψ(xv0t, t)|
v0
ω0=L0
~,L0=p0v0E0
L0=p0v0H(p0)
H(p)
H(p) = H(p0)+(pp0)H
p p=p0
+1
2(pp0)22H
p2p=p0
=E0+(pp0)v0+(pp0)2
2m
ψ(x, t) = Zdp eipx
~iH(p)t
~˜
ψ(p, 0)
=iE0t
~eip0x
~Cσ
~Zdp exp i(pp0) (xv0t)
~i(pp0)2
2m~ti(pp0)x0
~(pp0)2
2 (~)2!
=iE0t
~eip0x
~Cσ
~ZdP exp iP
~(xx0v0t)P2
2it
m~+σ2
~2
|ψ(x, t)|2=C2σ2
σ4+~2t2
m21/2exp
σ2(xx0vt)2
σ4+~2t2
m2
x
x(t) = σ2
2+~2t2
2m2σ21/2
="(∆x0)2+p0
mt2#1/2
p0
mt
x0x0
v= ∆p0/m
v0=p0/m
(∆v)t t
xp
(x0, p0)p0p0
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !