Devoir #4: GBM2620 Thermodynamique statistique biomoléculaire, Automne 2016, M Buschmann & M
Lavertu
GBM2620 Thermodynamique statistique biomoléculaire
Devoir #4 (Automne 2016)
Distribué : le mercredi 21 septembre 2016
À remettre : le mercredi 28 septembre 2016
Nombre de problèmes qui seront corrigés : 6 probmes sur 9
Problème 1 : Problème 3, Chapitre 8 de Molecular Driving Forces (MDF)
Problème 2 : Problème 7, Chapitre 8 de Molecular Driving Forces (MDF)
Problème 3 : Problème 18, Chapitre 8 de Molecular Driving Forces (MDF)
Problème 4 : Problème 9, Chapitre 9 de Molecular Driving Forces (MDF)
Problème 5 : Problème 12, Chapitre 9 de Molecular Driving Forces (MDF)
Problème 6 : Problème 13, Chapitre 9 de Molecular Driving Forces (MDF)
Problème 7 : Échange de chaleur entre deux objets
1.1 Supposer la relation suivante entre l'entropie S, le volume V, l'énergie interne U et le
nombre de particules N d'un système thermodynamique :
, où A est une constante.
a) Est-ce que la valeur de dans l’expression de lentropie peut être quelconque ? Justifier
votre réponse.
b) Exprimer l’énergie U en fonction de la température T, de N et de V
c) Exprimer la pression p en fonction de N, V, et T.
d) La chaleur spécifique de ce système est donnée par
V
cT
est fonction de A, N et
V. Trouver l’expression de
.
1.2 Supposer maintenant deux objets identiques, chacun obéissant à l'équation d’état trouvée
dans la partie précédente (1.1). N et V sont les mêmes pour les deux objets, et ils sont
initialement à des températures T1 et T2, respectivement. Ces deux objets sont utilisés comme
source de travail en les portant à une température finale commune Tf. Ce processus est accompli
par le retrait de la chaleur à partir de l’objet le plus chaud et le transfert d'une fraction de cette
Devoir #4: GBM2620 Thermodynamique statistique biomoléculaire, Automne 2016, M Buschmann & M
Lavertu
chaleur dans l’objet le plus froid. Le reste de la chaleur est transformé en travail. N et V sont
constants pendant ce processus.
e) Quel est l’intervalle de températures finales possibles?
Indice : L’efficacité de la conversion de la chaleur en travail détermine l’intervalle de
températures finales possibles. Utiliser la première loi et l’équation liant la température à
l’énergie afin de déterminer dans quel cas la température est minimale/maximale. Rappelez-
vous qu’un travail maximal est produit pour un processus réversible, c'est-à-dire lorsque le
changement d’entropie du système est nul.
f) Quel est le travail maximal qui peut être produit par ce système?
Problème 8 : Démonstration d’identis mathématiques
a) Soit trois variables d’états x, y, et z. Démontrer les deux relations ci-dessous le long des
trajets pour lequel F (x, y, z) = 0. Suggestion : Débuter avec x = x(y,z) , y = y(x,z),
développer l’expression des différentielles et  et éliminer  ou  en combinant
les différentielles. 






 
b) L’équation d’état du gaz parfait est un exemple d’équation qui satisfait la condition F (x,
y, z) = 0 (i.e. PV-NkT = 0). Vérifier que les relations démontrées ci-dessus sont
satisfaites pour l’équation d’état du gaz parfait.
Problème 9 : Refroidissement d’un gaz par expansion libre
On considère un gaz qui subit une expansion libre tel qu’illustré ci-dessous. On veut déterminer
le changement de température associé à cette expansion pour un gaz parfait et pour un gaz el
décrit par léquation d’état de Van der Waals.
Devoir #4: GBM2620 Thermodynamique statistique biomoléculaire, Automne 2016, M Buschmann & M
Lavertu
Figure 1. Expansion libre d'un gaz d'un volume Vi à un volume final Vf
Équation de van der Waals pour un gaz réel:
Le comportement d’un gaz réel est bien prédit par l’équation de Van der Waals. Cette
équation contient des corrections à l'équation d’état des gaz parfaits qui ont pour origine 1) le
volume fini des molécules/atomes 2) la force de cohésion ou attraction entre les
molécules/atomes d’un gaz réel.
1ere correction : Pour un gaz réel, la densité ne peut augmenter sans limite sous l’effet
d’une augmentation de la pression en raison du volume fini des molécules/atomes (noyau
répulsif qui limite la densi que le gaz peut atteindre). Par conséquent, lorsque la pression
augmente, le volume tend vers un minimum Vmin = nb, b est une constante expérimentale.
L'équation des gaz parfaits doit être corrigée pour tenir compte de l'existence du noyau
répulsif et prend la forme : 

2ieme correction : La force de cohésion entre les molécules/atomes induit une
diminution de la pression par rapport à celle d'un gaz sans interaction (gaz parfait). La
diminution de la pression est proportionnelle à la probabilité que deux molécules
interagissent, i.e. proportionnelle au car de la densité de particules (n/V)2. L'équation d'état
de Van der Waals prend donc la forme finale suivante :


a est une constante expérimentale (positive) qui dépend de la nature du gaz à l'étude.
a) Trouver l’expression de l’apport de chaleur, le travail effectué sur le gaz et le changement
d’énergie interne associé à cette expansion libre et indiquer si ces quantités changent en
fonction de la nature du gaz (parfait ou réel).
Devoir #4: GBM2620 Thermodynamique statistique biomoléculaire, Automne 2016, M Buschmann & M
Lavertu
b) Afin de calculer le changement de température que subit le gaz au cours de l’expansion,
l’expression de 
doit être déterminée. Considérer que U est une fonction de T et V
et exprimer 
 en fonction de 
 et
.
c) Démontrer la relation suivante

 

d) Que vaut 
 pour un gaz parfait ? Que vaut 
 pour un gaz parfait ? Justifier.
e) Calculer 
 pour le gaz de Van der Waals.
f) river la relation suivante à partir de la relation démontrée en c) ci-dessus :



g) En utilisant


 , montrer que la variation du Cv du gaz réel avec le
volume est nulle et que cette quanti ne dépend donc que de T et de N. Cette quanti ne
contient donc aucune correction de volume due aux interactions et il est donc justifié de
considérer que la capacité calorifique Cv d’un gaz réel est la même que celle d’un gaz
parfait.
h) En prenant Cv = 3/2NR, donner une expression de 
 pour le gaz de Van der Waals
et calculer le changement de température associé à l’expansion libre d’un gaz réel (Ti, Vi
à Tf, Vf).
i) Calculer le changement relatif de température (Tf-Ti)/Ti pour 1 mole d’oxygène
initialement compris dans 10-3 m3, Ti = 300K, qui subit une expansion spontanée (prenez
Vf = infini et a=0.1378 Pa.m6/mol2).
j) Quelle forme d’énergie a augmenté/diminué au cours de l’expansion? Est-ce que
l’expansion libre est une méthode efficace pour refroidir un gaz réel?
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !