21. On vérifie d`abord si les corps ont commencé à se déplacer. On

21. On vérifie d’abord si les corps ont commencé à se déplacer.
On suppose qu’ils sont immobiles et on calcule le module
de la force de frottement statique qui les maintient en place.
On compare le module de cette force à la valeur maximale,
soit µsN. Les diagrammes des forces apparaissent ci-
contre. On ne connaît pas la direction de la force de frotte-
ment
f,mais on suppose qu’elle est orientée vers le bas du
plan incliné. Toutefois, si on obtient une valeur négative
pour f, on saura que la force s’exerce plutôt vers le haut du
plan incliné.
a) Pour A, on pose que l’axe des xpositifs est orienté vers le haut du plan et que l’axe des ypositifs a la même direction
que la force normale. Les équations de la deuxième loi de Newton en fonction des composantes xet ydeviennent
TfPAsin θ=0 NPAcos θ=0.
Si on pose que la direction positive de l’axe des yest orientée vers le bas dans le cas du corps B, la deuxième
loi de Newton permet d’écrire que
PBT=0.
La résolution de ces trois équations, en considérant que T=Tpuisque la masse de la corde est négligeable, mène
aux résultats suivants:
f=PBPAsin θ=32102 sin 40=34 N
(le signe négatif indique que la force de frottement agit vers le haut du plan incliné) et
N=PAcos θ= 102 cos 40=78N,
ce qui signifie que fs,max =µsN=(0,56)(78) = 44 N. Puisque le module fde la force de frottement qui
maintient les corps immobiles est inférieur à fs,max , les corps ne bougent pas. L’accélération est donc nulle.
b) Comme Ase déplace vers le haut du plan incliné, la force de frottement est cinétique et agit vers le bas du plan
incliné avec un module f=fc=µcN. La deuxième loi de Newton, en utilisant le même système de coordonnées
qu’en a), permet d’écrire que
TfcPAsin θ=mAaNPAcos θ=0 PBT=mBa
pour les deux corps. On résout en fonction du module de l’accélération a:
a=PBPAsin θµcPAcos θ
mB+mA
=32 N (102 N) sin 40
(0,25)(102 N) cos 40
(32 N + 102 N)/(9,8m/s2)
=3,9m/s2.
Le signe négatif de aindique que l’accélération est orientée vers le bas du plan incliné. Par conséquent, puisque
la vitesse est orientée vers le haut du plan incliné, la vitesse des blocs diminue.
c) Puisque Ase déplace vers le bas du plan incliné, la force de frottement est cinétique et agit vers le haut du plan
incliné. La deuxième loi de Newton, en utilisant le même système de coordonnées qu’en a), permet d’écrire que
T+fcPAsin θ=mAaNPAcos θ=0 PBT=mBa.
En résolvant ces équations en fonction de a, on obtient:
a=PBPAsin θ+µcPAcos θ
mB+mA
=32 N (102 N) sin 40+(0,25)(102 N) cos 40
(32 N + 102 N) /(9,8m/s2)
=1,0m/s2.
Le signe négatif de aindique que l’accélération est orientée vers le bas du plan incliné. Par conséquent, puisque
la vitesse est orientée vers le bas du plan incliné, la vitesse des blocs augmente.
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !