+
f[A, +[
`Rf ` +lim
x+f(x) = `
I ` B x > B f(x)I
f(x)`
+
f++lim
x+f(x) = +C
B x > B f(x)> C f(x)
+
f−∞ +lim
x+f(x) = −∞ C
B x > B f(x)< C f(x)
+
αR
lim
x+xα=
0α < 0,
1α= 0,
+α > 0.
lim
x+ex= +
lim
x+ln(x) = +
sin +
0 1 +∞ −∞
` I ` 0
1nZsin(2) = 0 sin(2+π/2) = 1
B x > B sin(x)Isin `
−∞
f]− ∞, A]
`Rf ` −∞ lim
x→−∞ f(x) = `
I ` B x < B f(x)I
f(x)`
−∞
f+∞ −∞ lim
x→−∞ f(x) = +C
B x < B f(x)> C f(x)
−∞
f−∞ −∞ lim
x→−∞ f(x) = −∞ C
B x < B f(x)< C f(x)
−∞
n
lim
x→−∞ xn=(+n ,
−∞ n .
lim
x→−∞
1
xn= 0
lim
x→−∞ ex= 0
f D a
D f a D
f a
`Rf ` a lim
xaf(x) = `
I ` J a
xJD f(x)I f(x)
` a
f+alim
xaf(x) = +C
J a x JD f (x)> C
f(x)`
a
f−∞ alim
xaf(x) = −∞ C
J a x JD f (x)< C
f(x)`
a
lim
x0
sin(x)
x= 0
lim
x0
1
x2= +
a
]a, b[a < b f
`Rf ` a lim
xa+f(x) =
` I ` J a
xJD x > a f(x)I f(x)
` a a
f+alim
xa+f(x)=+
C J a x JD x > a f(x)> C
f(x)`
a a
f−∞ alim
xa+f(x) = −∞
C J a x JD x > a f(x)< C
f(x)`
a a
lim
x0+
1
x= +lim
x0
1
x=−∞
+∞ −∞ a a+af g
D
lim f(x) lim g(x) lim f(x) + g(x)
`R`0R`+`0
`R++
`R−∞ −∞
+++
−∞ −∞ −∞
+∞ −∞ F I
lim f(x) lim g(x) lim f(x)g(x)
`R`0R``0
` > 0 ++
` > 0−∞ −∞
` < 0 +∞ −∞
` < 0−∞ +
0±∞ F I
+++
+∞ −∞ −∞
−∞ +∞ −∞
−∞ −∞ +
g D
lim f(x) lim g(x) lim f(x)/g(x)
`R`06= 0 `/`0
` > 0 0++0
` > 0 0−∞0
` < 0 0+−∞0
` < 0 0+0
`R±∞ 0
+` > 0 0++
+` < 0 0−∞
+` > 0 0+−∞
+` < 0 0+
0 0 F I
±∞ ±∞ F I
f I g J f(I)J
a I lim
xaf(x) = ` `
J
lim
xagf(x) = lim
y`g(y).
a ` +∞ −∞
lim
x+ln(2 + ex)y=x
lim
x+2 + ex= lim
y→−∞ 2 + ey= 2.
z= 2 + ex
lim
x+ln(2 + ex) = lim
z2ln(z) = ln(2).
f g ]A, +[
x > A f(x)g(x)
lim
x+f(x) = `lim
n+g(x) = `0``0
lim
x+f(x) = +lim
x+g(x)=+
lim
x+g(x) = −∞ lim
x+f(x) = −∞
`0< ` a < `
`0< b < ` x g(x)]a, b[g(x)< b f(x)< b x
]b, ` + 1[ f(x)x
f+``0
ARx f(x)> A g(x)f(x)> A g +
+
2
−∞ a a+a
xR
x1x+ cos(x)x+ 1.
lim
x+x+ cos(x)=+lim
x→−∞ x+ cos(x) = −∞
f g h
]A, +[x > A f(x)g(x)h(x)
lim
x+f(x) = lim
x+h(x) = `lim
x+g(x) = `
I ` x f(x)
h(x)I I f(x)g(x)h(x)g(x)I
g ` 2
−∞ a a+a
+x+cos(x)
xx+cos(x)x1
x x + cos(x) +∞ ∞/
x > 0
11
x=x1
xx+ cos(x)
xx+ 1
x= 1 + 1
x.
x+cos(x)
x1 +
α > 0n > 0
lim
x+
ex
xα= +,lim
x+
ln(x)
xα= 0+,lim
x0+xαln(x)=0,lim
x→−∞ xnex= 0.
fRf(x) = exx
xRf0(x) = ex1f0(x)0x0f0(x)0x0f
f0xRf(x)f(0) = 1 exx+ 1
ex/2x
2+ 1 x
2x0exx2
4x0
ex
xx
4.
ex
x+
lim
x+
ex/α
x/α = lim
x+αex/α
x= +.
1
lim
x+
ex/α
x= +.
y=ex/α
x
lim
x+
ex
xα= lim
x+ ex/α
x!α
= lim
y+yα= +.
y=αln(x)
lim
x+
ln(x)
xα= lim
x+
1
α
αln(x)
eαln(x)= lim
y+
1
α
y
ey.
`/ +`= 10+
y= 1/x x 0+y+
lim
x0+xαln(x) = lim
x0+1
xα
ln(1/x) = lim
y+yαln(y) lim
y+ln(y)
yα= 0.
y=x x −∞ y+
lim
x→−∞ xnex= lim
x→−∞(1)n(x)n1
ex= lim
y+(1)nyn
ey.
`/ +`= (1)n
n2
+ex
x6+ ln(x)2
ex
x6+ ln(x)2=ex
x6
1
1 + ln(x)
x32.
lim
x+
ex
x6= +,lim
x+
ln(x)
x3= 0.
lim
x+ln(x)
x32
= lim
y0y2= 0.
lim
x+
ex
x6+ ln(x)2= +.
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !