38ième colloque du Groupe Français de Rhéologie, Brest, 15-17 Octobre 2003
Etude par DNS de l’influence des paramètres d’une loi de
comportement d’une solution de tensio-actif sur la reduction
de la traînée
S. Guillou, R. Makhloufi et F. Hadri
Laboratoire Universitaire des Sciences Appliquées de Cherbourg
Site Universitaire, BP 78, 50130 Octeville, FRANCE
Résumé : Dans ce travail, nous utilisons un modèle numérique tridimensionnel pour étudier l’influence des
paramètres d’une loi de comportement d’un fluide rhéo-épaississant (une solution aqueuse de tensioactif) sur
la réduction de la traînée.
Mots-clés : Simulation numérique directe, réduction de la traînée, fluide non-Newtonien
Abstract: In this work, we use DNS to study the effect of a shear-thickening fluid (surfactant solution)
viscosity law on drag reduction.
1. Introduction
Ce travail a pour objet l’étude de l’influence des
paramètres d’une loi de comportement d’une
solution micellaire de tensio-actif sur la réduction
des frictions dans un régime turbulent. Ce
phénomène physique bien connu et appelé réduction
de la traînée est obtenu grâce à l’ajout de petites
quantités d’additifs, des tensio-actifs par exemple,
dans de l’eau. La présence de ces additifs modifie le
comportement rhéologique du fluide initial en lui
conférant des propriétés rhéologiques particulières.
γ
&
c
γ
&
µ01
µ02
Figure 1 : viscosité apparente de la solution aqueuse Ethoquad
O/12 à 500ppm+ NaSal à 300ppm, symbole
P
, valeurs de Usui
et al. [1] pour une température de 293K, ligne plaine, modèle
de viscosité
µ
.
Parmi ces propriétés, celle du rhéo-épaississement a
une influence sur la réduction de la traînée. Il a été
montré, en effet, que certains systèmes micellaires
qui exhibent ce comportement rhéologique ont
conduit à la réduction de la traînée. C'est le cas de la
solution aqueuse d’Ethoquad O/12 (Oreyl-
bishydroxyethyl-methyl-ammonium chloride à 500
ppm de concentration) + NaSal (à 300 ppm)[1]. Sur
la figure 1 (symbole {), une augmentation brusque
de la viscosité apparente, caractéristique des effets
du rhéo-épaississement, apparaît pour des taux de
cisaillement compris entre 5 et 10 s-1.
Dans une communication précédente [2], nous avons
proposé une loi, notée µ (Eq. 1), issue de la
composition de deux lois de Carreau (Eq. 2), µ1 et
µ2, pour approcher le comportement rhéologique
(voir figure 1) de cette solution. Avec les valeurs du
tableau 1, la loi µ1 approche les valeurs
expérimentales pour des taux de cisaillement
supérieurs à c
γ
&=7s-1, tandis que µ2 est considéré
pour des taux de cisaillement inférieur à c
γ
&.
() () () () ()
+
+
=r
c
γγ
γµγµγµγµ
γµ
&&
&&&&
&tanh
22
2121 (1)
()
()
()
()
2/1
2
01 )(
++= i
iii
n
ii
γλµµµγµ
&& (2)
Tableau 1 : Valeurs des paramètres des lois µ1 et µ2
(Ethoquad O/12).
µ (Pa.s) µ0 (Pa.s) µ (Pa.s) λ (s) n
µ1 3x10-2 1.8x10-3 0.02 -0.8
µ21.4x10-2 1.56x10-3 1.8 0.55
Dans cette communication, nous présentons des
résultats sur l’influence des paramètres de cette loi
de comportement sur la réduction de la traînée. Nous
nous intéressons notamment aux effets des écarts
entre µ01 et µ02 , maximum de µ1 et de µ2
respectivement, au moyen de Simulations
Numériques Directes.
2. Fondement et conditions de simulation
On considère un fluide Newtonien (typiquement de
l’eau comme solvant) auquel on ajoute une petite
quantité d’éléments tensioactifs. On décrit ici le
38ième colloque du Groupe Français de Rhéologie, Brest, 15-17 Octobre 2003
mouvement d’un tel fluide par les équations des
fluides incompressibles dans lesquelles le tenseur
des contraintes τ est évalué en posant l'hypothèse du
fluide Newtonien généralisée qui conduit à
l’équation constitutive τ=2µD, où µ est une fonction
du gradient de vitesse
γ
&. Le modèle numérique
utilisé est SUDRES3D [2][3]. La configuration est
celle présentée dans [3]. A savoir, qu'il s'agit d'un
écoulement turbulent entre deux plaques parallèles,
que le domaine est de dimension 2πh*πh*2h, que le
maillage est de 21x21x61 dans les directions x, y et z
respectivement, et que les calculs sont menés à débit
fixé. On utilise comme conditions initiales les
résultats instantanés d'un calcul pour un fluide
Newtonien. On présente trois cas de figure en
partant des valeurs du Tableau 1 :
Cas 1 : µ02 est fixée à 14.10-3Pa.s et µ01 prend les
valeurs 10, 14, 22, 30 et 40.10-3Pa.s.
Cas 2 : µ02 est fixée à 5.10-3Pa.s et µ01 prend les
valeurs 10, 20 et 30.10-3Pa.s.
Cas 3 : µ01 est fixée à 30.10-3Pa.s et µ02 prend les
valeurs 2,5,14 et 24.10-3Pa.s
Pour chaque cas, des calculs (réalisations) sont
réalisés pour plusieurs nombres de Reynolds
Rem=2Ubhρ/µs (où, Ub est la vitesse débitante, ρ est
la masse volumique de la solution et µs est la
viscosité dynamique de l’eau). Le coefficient de
frottement est alors obtenu par moyenne temporelle
sur l’état statistiquement stationnaire.
3. Résultats et discussions
Les figures 2a-2c présentent l’évolution du
coefficient de frottement en fonction du nombre de
Reynolds pour les différents cas. L’ensemble de ces
calculs représente un total d’environ 3500 heures de
simulation sur station XP1000. Dans le cas 1 (figure
2a), on constate que, pour Rem<15000, le coefficient
de frottement augmente et que la zone de transition
vers l’écoulement turbulent se décale vers des
nombres de Reynolds plus importants quand µ01
augmente. Pour Rem>15000, le coefficient de
frottement change peu par rapport au cas de
référence. Le taux de réduction maximum (pour tout
nombre de Reynolds) varie de 43% dans le cas 1-1 à
23% dans le cas 1-5. Dans le cas 2 (figure 2b), une
évolution similaire est observée pour le coefficient
de frottement et le nombre de Reynolds de
transition. En revanche le taux de réduction de la
traînée maximum (pour tout Rem) varie de 43% dans
le cas 2-1 à 36% dans le cas 2-3. Dans le cas 3
(figure 2c), on constate que les courbes pour les
différentes valeurs de µ02 sont proches voire
superposées. Ce qui nous amène à dire qu’au taux de
cisaillement critique considéré (7s-1), le paramètre
µ02 n’influe pas sur la réduction de la traînée.
Figure 2 : Coefficient de frottement en fonction de Rem.
[1] Usui H., T. Itoh and T. Saeki, On pipe diameter
effects in surfactant drag-reducing pipe flows, Rheo.
Acta, 37, 122-128 (1998).
[2] Guillou S., Makhloufi R. (2002), Direct numerical
simulation of an incompressible channel flow in presence
of an additive, In : 11th International Conference
Transport and Sedimentation of Solid Particles, Ed. par J.
Sobota et R. Verhoeven, AXA, Wroclam, pp 151-158.
[3] Guillou (S.) et Makhloufi (R.), Etude par DNS de
l'effet de modification d'une loi de comportement d'une
solution de tensioactif sur la réduction de la trainée, In :
37ème Colloque annuel du Groupe Français de
Rhéologie, St-Etienne, pp. 187-192 (2002)
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !