(1,1),(0,1),(1,0) (2,0) 3
(x0, y0),
(x1, y1),(x2, y2),(x3, y3).
V
V
x0, x1, x2, . . . , xry0, y1, y2, . . . , yr
Pk,0=ykk= 0,1, . . . , r
Pk,j+1(x) = (xkx)Pj,j (x)(xjx)Pk,j (x)
xkxj
k=j+ 1, . . . , r j = 0, . . . k 1.
P3,3(x0, y0)=(1,1),(x1, y1) = (0,1),(x2, y2) = (1,0) (x3, y3) = (2,0).
Pk,j kj x0, x1, . . . xj1,
xk.
Pk,k
3 (1,1),
(0,1),(1,0) (2,0)
x0, x1, x2, x3
ν(m2.s1)
T(C)
T15 16 17 18 19 20 21 22 23 24 25 26 27 28
ν1.14 1.11 1.08 1.06 1.03 1.01 0.983 0.960 0.938 0.917 0.896 0.876 0.857 0.839
26.5
ν= 0.9m2.s1
f(x) =3x
(xi, f(xi)), i = 0 4 x0= 0 , x1= 1 , x2= 8 , x3= 27 , x4= 64
f P41
P0(x) = f(x0)
Pk(x) = Pk1(x)+(xx0)(xx1). . . (xxk1)f[x0, x1, . . . , xk]
Pi(20) i= 1 4 f(20)
E4(x) = f(x)P4(x)
E4(20) (2).
f(xi, f(xi)) i= 1 4
(1). Q3Qi(20) i= 1,2,3E3(20) = f(20)Q3(20)
3x=β β = 2.71441761659
(yi=yiyi1)
(f(xi), xi)
i= 0 4
R4
Rk(x) = Rk1(x)+(xxn)(xxn1). . . (xxn(k1))kf(xn)
k!hk
R0(x) = f(xn)
Ri(β)i= 1 4 ε2(β) = f1(β)R2(β)
R3(β)R2(β)
a=x1< x2<··· < xn=b n f : [a, b]R[xi;xi+1]
s
s(xi) = f(xi), i = 1 . . . n
s0(x
i) = s0(x+
i) : ,
s00(x
i) = s00(x+
i) : ,
s00(x1) = s00(xn)=0.
hi=xi+1 xi, i = 1,2,···n1; Di=s00(xi), i = 1,2,···n.
s00 [xi;xi+1]
s00(x) = Di+1
hi
(xxi)Di
hi
(xxi+1),
xixxi+1, i = 1,2,···n1
Ai, Bi, i = 1,2,···n1
s0(x) = Di+1
2hi
(xxi)2Di
2hi
(xxi+1)2+Ai,
xixxi+1, i = 1,2,···n1
s(xi) = f(xi), i = 2,···n1s(xi+1) = f(xi+1), i = 1,2,···n1 1 in1
Ai=f(xi+1)f(xi)
hi
+hi
6(DiDi+1), Bi=f(xi)h2
i
6Di.
s0(x+
i) = s0(x
i)
µiDi1+ 2Di+λiDi+1 =Fi,2in1
µi=hi1
hi+hi1
;λi=hi
hi+hi1
;
Di
2λ2
µ32λ3
µ42λ4
· · ·
· · ·
µn22λn2
µn12
D2
D3
D4
·
·
Dn2
Dn1
=
F2
F3
F4
·
·
Fn2
Fn1
s
N
f f0(15) = f0(50) = 0
f[0,6]
P
x0 2 4 6
f(x) 0.51.7903 3.3900 1.2795
f
f(x) = 3 sin(2x) + 1
2cos(3x),
x= 3 x= 5
f
s xi=i, i = 0 . . . 5
Di=s00(xi), i = 0 . . . 5D0D5s
µiDi1+ 2Di+λiDi+1 =Fi,1i4,
µi=λi= 1/2, i = 1 . . . 4A A
LU
s
fCn+1([a, b]) ax0< x1··· < xnb Pnf(xi)
f(x)Pn(x) = (xx0)···(xxn)
(n+ 1)! f(n+1)(ξ)aξb
g: [a, b]R g0g(n+ 2) g0(n+ 1)
W(t) = f(t)Pn(t)(tx0)···(txn)K(x)K W (x)=0
|f(x)Pn(x)| ≤ Mn+1
(n+ 1)!
n
Y
i=0
(xxi)
|Qn
i=0(xxi)|h θ(x) = Qn
i=0(xxi)h= 1
x0= 0
θ(x+ 1) = θ(x)x+1
xn
|θ(x)|x0xx1
maxx0xx1|θ(x)| ≤ n!hn+1
4
|f(x)Pn(x)| ≤ Mn+1
4(n+ 1)hn+1
f(x) = ´x
0et2/2dt h [0,1]
h f 106
arccos cos θ= arccos xx[0, π]x= cos θ
Qn(x) = cos(narccos x)Qn[1,1]
w(x)=1/1x2
hQn, Qni=π
2n1hQ0, Q0i=π
Qnn Qn+1(x)=2xQn(x)Qn1(x)
Qnn
Qnn
xk= cos (2k1)π
2nk= 1 ···n
Qn[1,1] n+ 1 yk= cos
nk= 0 ···n
.
Qn=1
2n1QnQnP n
1
1
2n1= max
1x1
Qn(x)
max
1x1|P(x)|
|f(x)P(x)| ≤ Mn+1
(n+ 1)!
n
Y
i=0
(xxi)
P f (xi) (xi)
nNf: [a, b]Rx0x1. . . xn
[a, b]pnPnf x0, . . . , xn
p(j)
n(z) = f(j)(z), j = 0, . . . , m 1,
z m x0, . . . , xn
pn(x) =
n
X
k=0
f[x0, . . . , xk]vk1(x),
vk(x)=(xx0). . . (xxk)
f[xj] = f(xj)j= 0, . . . , n,
f[x0, . . . , xk] =
f[x1, . . . , xk]f[x0, . . . , xk1]
xkx0
xk> x0,
f(k)(x0)
k!xk=x0.
f[x0, . . . , xk]xi
pP4f(x) = ln x
p(1) = f(1) = 0, p(2) = f(2) = 0.693147,
p0(1) = f0(1) = 1, p0(2) = f0(2) = 0.5,
p00(1) = f00(1) = 1.
x[a, b]
f(x)pn(x) = f[x0, . . . , xn, x]vn(x)
gn(x) = f[x0, . . . , xn, x]
f∈ Ck([a, b]) x0x1. . . xk[a, b]
x0ξxk
f[x0, . . . , xk] = f(k)(ξ)
k!,
gk1: [a, b]R, x 7→ gk1(x) = f[x0, . . . , xk1, x]
d
dxgn(x) = f[x0, . . . , xn, x, x].
α[a, b]f0(α) = p0
n(α) + E(f)
E(f) = f(n+2)(ξ)
(n+ 2)! vn(α) + f(n+1)(η)
(n+ 1)! v0
n(α)
ξ, η [a, b]
E(f)α xivn(α)=0
xiα n v0
n(α) = 0
n= 1
x0=α x1=α+h
x0=αh x1=α+h
n= 2 x0=α x1=α+h x2=α+ 2h
f0(α)3f(α)+4f(α+h)f(α+ 2h)
2h
E(f) = h2
3f000(ξ)
ξ[α, α + 2h]
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !