Fiche Savoir-Faire: Simplifier une expression en utilisant les angles

Fiche Savoir-Faire:
Simplifier une expression en utilisant les angles associés
Méthode
L'objectif est d'obtenir une expression ne faisant plus intervenir qu'un seul angle et un minimum de
nombres trigonométriques de cet angle (si possible un seul).
1. Simplifier chaque angle pris isolément:
a) Simplifier éventuellement les expressions algébriques des amplitudes
b) Réduire les amplitudes, en ajoutant ou supprimant des tours complets (2π ou 360°)
2. Ramener les angles dans le premier cadran en utilisant les symétries (angles associés).
Remarques :
a) Pour cette étape, il est recommander de placer tous les angles sur le cercle
trigonométrique ainsi que leurs symétriques du premier quadrant, pour identifier les
symétries et les relations entre les nombres trigonométriques des différents angles.
b) Si un angle est inconnu (x, θ, α...), le placer en premier, dans une position
quelconque du premier cadran.
3. Si possible (et nécessaire), utiliser les angles complémentaires pour n'avoir plus que des
sinus ou que des cosinus dans l'expression
Exemples
1. Simplifier au maximum
sin(180 °α)sin (180 °+α)
1. a) Pas de simplification possible de (180°-α) ou (180°+α)
b) Pas de réduction nécessaire.
2. Plaçons sur le cercle tous les angles et leurs symétriques du
premier quadrant et observons. Nous voyons que:
sin(180 °−α)=sin α
sin(180 °)=sin α
Nous pouvons remplacer :
sin(180 °−α)sin (180 °+α)=sin α(sin α)=2 sin α
2. Simplifier au maximum
sin(3π
2α)+sin (2α+π
2)+cos(3πα)+sin(α− π
2)
1. a) Nous simplifions :
2α+π
2+ π
2 et 3π−α=(3π+α)
b) Nous réduisons :
(3π+α)(π)
L'expression devient donc :
sin(3π
2α)+sin
(
α+ π
2
)
+cos
(
(π)
)
+sin(α− π
2)
2. Plaçons sur le cercle tous les angles et leurs symétriques
du premier quadrant. Nous voyons que :
sin(3π
2α)=sin(π
2α)
sin(α+ π
2)=sin(π
2α)
sin(α− π
2)=sin (π
2−α)
Nous pouvons donc remplacer :
sin (π
2α)+sin (π
2α)cos (α)−sin (π
2−α)=cos(α)−sin(π
2α)
3. On voit que α et (π/2 – α) sont complémentaires, donc sin(π/2 – α) = cos(α).
L'expression se simplifie donc en : -cos(α)- cos(α) = -2 cos(α)
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !