φ A(H)T(H)
H
B(H)
A(H)τ∈T(H)τ6= id u∈B(H)τ
H uτu−1
u(H)u(H) = H uτu−1∈T(H)
T(H)B(H)v∈A(H)
x∈H uvu−1(x) = u(v(u−1(x)))
u∈B(H)u−1(x)∈H u−1B(H)
v∈A(H)v(u−1(x)) = u−1(x)
uvu−1(x) = x x ∈H uvu−1∈A(H)A(H)
B(H)
φ:B(H)−→ k∗×GL(H)u∈B(H)
u(H) = H u|HH
Ker(φ) = {u∈B(H) d´et(u) = 1 u|H= idH}T(H)
T(H)
(λ, v)∈k∗×GL(H)en/∈H E =H⊕ken
u u(en) = λ/d´et(v).enu(x) =
v(x)x∈H u ∈B(H)x∈H u(x) = v(x)∈
Hd´et(u) = d´et(v).λ/d´et(v) = λ6= 0
φ(u) = (λ, v)φ
(e1, . . . , en−1)H en/∈HB= (e1, . . . , en)
E D(H) = {u∈GL(E)u(H) = H
enu}u(en) = λen
λ∈k∗0
D(H)B(H)enu
v uv u−1(λ, v)u
D(H)φ D(H)
u∈D(H)
φ(u) = (d´et(u|H)λ, u|H)λ en
uB(1,idH)
u|H= idH1λ= 1
u|H= idHu(en) = enu= id φ D(H)