fRnf(0) = 1
f0=f
0
fRf(0) = 1 f0=f
exp
fRf(0) = 1 f0=f
xRf(x)×f(x)=1
fR
xRϕ(x) = f(x)f(x)ϕR
ϕ u ×v v
ϕ0(x) = f0(x)f(x) + f(x)f0(x)×(1) = f(x)f(x)f(x)f(x)=0
ϕ ϕ(0) = f(0)f(0) = 1 ×1=1 xR
f(x)f(x) = ϕ(x) = ϕ(0) = 1
aRf(a) = 0 ϕ(a) = f(a)f(a) = 0 ×
f(a)=0 ϕ(a)=1
f > 0aRf(a)<0
fRf(0) = 1 >0f(a)<0
b0a f(b)=0
f(x)>0xR
f g ϕ =f
g
ϕRg(x)6= 0 xR
f0=f g0=g
ϕ0=f0gfg0
g2=fg fg
g2= 0
ϕ ϕ(0) = f(0)/g(0) = 1/1 = 1 xRϕ(x)=1
f/g = 1 f=g
exp RxRexp0(x) = exp(x)
exp(0) = 1
xRexp(x) = 1
exp(x)
xRexp(x)>0
xRyRexp(x+y) = exp(x) exp(y)
xRyRexp(xy) = exp(x)
exp(y)
xRnZexp(nx) = (exp(x))n
xRexp(x) exp(x) = 1 exp(x) = 1
exp(x)
yR
ϕy(x) = exp(x+y) exp(x)xR
ϕ0
y(x) = exp0(x+y) exp(x)+exp(x+y) exp0(x)×(1) = exp(x+y) exp(x)exp(x+y) exp(x) = 0
ϕyϕy(0) = exp(0 + y) exp(0) = exp(y)xR
exp(x+y) exp(x) = ϕy(x) = ϕy(0) = exp(y)
xRexp(x+y) = 1
exp(x)exp(y) = exp(x) exp(y)
e
exp
eexp(1)
e= exp(1)
e'2,718
nN
exp(n) = exp(n×1) = (exp(1))n=en
exp(n) = 1
exp(n)=1
en=en
xRexp(x) = ex
exp R
xRexp0(x) = exp(x)>0
x
exp
−∞ +
00
++
lim
x→−∞ exp(x) = 0 y= 0 C−∞
Cx= 0 y= exp0(0)(x0) + exp(0) = 1 ×x+ 1 = x+ 1
Cx= 0
ϕ(x) = ex(x+ 1) Rϕ ϕ0(x) = ex1
xR
ϕ0(x)0ex1
exe0
x0
x
ϕ0(x)
ϕ
−∞ 0+
0+
00
xRϕ(x)0Cexp
Cx= 1
exp(1) = eexp0(1) = exp(1) = e
y=exp0(1)(x1) + exp(1) = e(x1) + e=ex
x
f(x)
54321 1 2 3 4 5
e
0
1
1
2
3
4
5
6
T0
T1
a b
ea=eba=b
ea> eba>b
exp
lim
x+ex= +
lim
x→−∞ ex= 0
xRexx+ 1 lim
x+x+ 1 = +
lim
x+ex= +
lim
x+
1
ex= 0
1
ex=exlim
x→−∞
x= +lim
x→−∞ ex= 0
eu
u I
(eu)0=u0eu
v= exp v0= exp
f0= (vu)0=u0×(v0u) = u0eu
f(x) = exxR
uRu(x) = x u0(x) = 1xRf(x) =
exp(u(x)) f0(x) = u0(x) exp(u(x)) = 1×exp(x) = ex
lim
x+
ex
x= +
lim
x→−∞ xex= 0
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !