Z,+
p
pp
kk∈ {1,2, . . . , p 1}
a b (a+b)papbpp(a+ 1)p(ap+ 1) p
a a apa p
Pn(x) = anxn+an1xn1+· · · +a0aiPnr/s r s
s anr a0
(Fn)nNF0= 0 F1= 1 nN
Fn+2 =Fn+1 +Fn.
n1FnFn+1
m < n Fn=Fm+1Fnm+FmFnm1m n
mn FnFmFnFnm
FmFnFdd m n
a, b, c b a c a b c bc a
σN N
nNσ(n) =
d|n
d.
n σ(n) = 2n
6 28
σ(p)σ(pk)p k N
σ(pkql) = σ(pk)σ(ql)p q k, l Nσ(mn) = σ(m)σ(n)n m
n= 2p1(2p1) p2p1n
n n = 2tm t m
2t+1m= (2t+1 1)σ(m)m= (2t+1 1)M M N
σ(m) = m+M M = 1 n
Z,+
p
pp
kk∈ {1,2, . . . , p 1}
a b (a+b)papbpp(a+ 1)p(ap+ 1) p
a a apa p
Pn(x) = anxn+an1xn1+· · · +a0aiPnr/s r s
s anr a0
(Fn)nNF0= 0 F1= 1 nN
Fn+2 =Fn+1 +Fn.
n1FnFn+1
m < n Fn=Fm+1Fnm+FmFnm1m n
mn FnFmFnFnm
FmFnFdd m n
a, b, c b a c a b c bc a
σN N
nNσ(n) =
d|n
d.
n σ(n) = 2n
6 28
σ(p)σ(pk)p k N
σ(pkql) = σ(pk)σ(ql)p q k, l Nσ(mn) = σ(m)σ(n)n m
n= 2p1(2p1) p2p1n
n n = 2tm t m
2t+1m= (2t+1 1)σ(m)m= (2t+1 1)M M N
σ(m) = m+M M = 1 n
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !