(un)nNPnNun
unn
(fn)nN
PnNfn
x
x fn(x)
f(x).
fn:IRI
Rfnf I
quelquesoit xdans I, fn(x)n→∞ f(x).
I= [0,1] fn(x) =
nx si x[0,1
n]
nx + 2 si x[1
n,2
n]
0 si x[2
n,1]
x= 0 ,
fn(x) = 0 0n→ ∞ x6= 0 n>E(2
x) + 1 fn(x)=0
fn(x)0n→ ∞ fnf
f(x) = 0 x[0,1] n xn=1
n
fn(xn) = 1
1 = supx[0,1] |fn(x)|0 = supx[0,1] |f(x)|
limn→∞ supx[0,1]
E E
d:E×ER+
(D1) (x, y)E2,[d(x, y) = 0 x=y]
(D2) (x, y)E2, d(x, y) = d(y, x)
(D3) (x, y, z)E3, d(x, y)d(x, z) + d(z, y).
(E, d)
E+
R C
N E
N:ER+
(N1) XE , [N(X) = 0 X= 0]
(N2) XE , N(λX) = |λ|N(X)
(N3) (X, Y )E2, N(X+Y)N(X) + N(Y)
(E, N )N(f)
N(f) = kfk
(E, kk)
d(X, Y ) = kXYkE
kk
d(X, Y ) = 0 kXYk= 0 (N1) X=Y.
d(X, Y ) = kXYk=k(1)(YX)k=| − 1|.kYXk=d(Y, X)
d(X, Y ) = kXYk=kXZ+ZYk ≤kZXk+kZYk=d(X, Z) +
d(Z, Y )
Rnk(x1, x2, . . . , xn)k2=px2
1+x2
2+. . . +x2
nk(x1, x2, . . . , xn)k=
max(|x1|,|x2|, . . . |xn|)k(x1, x2, . . . , xn)k1=|x1|+|x2|+. . . +|xn|
kk2,
. . .
Cnk(z1, z2, . . . , zn)k2=z1z1+z2z2+. . . +znznk(z1, z2, . . . , zn)k=
max(|z1|,|z2|, . . . |zn|)k(z1, z2, . . . , zn)k1=|z1|+|z2|+. . . +|zn|
(E, kk)f
r B(f, r) = {gE, kfgk< r}
f r B(f, r) = {gE, kfgk ≤ r}
R2
kk2(x0, y0)
rkk(0,0) 1
(1,1),(1,1),(1,1) (1,1) kk1(0,0)
1 (1,0),(0,1),(1,0) (0,1)
N1N2
α β
xE , αN1(x)N2(x)βN1(x).
E
α β R2kk2et kk1
(E, kk)
fnfkk kfnfk →n→∞ 0
E I R
kfk= sup
xI|f(x)|
fnf I
kfnfk → 0n→ ∞
E[a, b]R
kfk1=Zb
a|f(t)|dt
fnfkfnfk1n→∞
0
E[a, b]R
kfk2=Zb
a|f(t)|2dt
fnf
kfnfk2n→∞ 0
fnf ε > 0n0
nn0fnf
ε ε f
fn2ε
f
fn
[0,1
n2]n x = 0 0 x=1
n21x1
n2
fn(0) = n
f(0).
fnf I fn
f I
x0|f(x0)fn(x0)| ≤ supxI|fn(x)f(x)|=kfnfkn→∞
0|fn(x0)f(x0)| → 0fn(x0)f(x0)fn
f n → ∞.¤
f
supxI|fn(x)
f(x)|
I= [0,[ et fn(x) = nx
1+n2x. x = 0 fn(0) = 0 0n→ ∞
x6= 0, fn(x)0n→ ∞ fn
f(x) = ½0 si x= 0
0 si x6= 0 = 0 fnf0(x) =
1
(1+n2x)2>0fn(x)1
nx→ ∞ fn
0x= 0 1
n
kfnfk=1
nn→∞ 0fn
I n → ∞
I= [0,[ et fn(x) = nx
1+nx2. x = 0 fn(0) = 0 n→∞ 0
x6= 0 fn(x)n→∞ 0fnf= 0 n→ ∞
f0
n(x)=1n2x
(1+nx2)2xn=1
n
supxI|fn(x)f(x)|x=1
n
fn(1
n) = 1
2nn→∞ 0fn
I n → ∞
I= [0,[ et fn(x) = nx
1+nx . x = 0 fn(0) = 0 n→∞ 0x6=
0fnf(x) = ½0 si x= 0
1 si x6= 0 = 0
x6= 0 |fn(x)1|=|nx
1+nx 1|=|1
1+nx |1
x0+kfnfk= 1 6→ 0n→ ∞ fn
f n → ∞.
fnf I R
nNgnx0I f
x0
|f(x)f(x0)| ≤ |f(x)fn(x)|+|fn(x)fn(x0)|+|fn(x0)f(x0)|
ε > 0,||fnf||0n→ ∞ N n N
||fnf||ε
3n=N fNx0η > 0
|xx0|< η |fN(x)fN(x0)| ≤ ε
3nN
|f(x)f(x0)| ≤ |f(x)fn(x)|+|fn(x)fn(x0)|+|fn(x0)f(x0)|n=N
|f(x)f(x0)| ≤ εε > 0,η > 0,tel que si |xx0|<
ηalors |f(x)f(x0)|< ε f x0¤
lim
n→∞ lim
x0+fn(x)6= lim
x0+lim
n→∞ fn(x)
fn(x) = nx
nx+1 [0,[f(x) =
½1 si x > 0
0 si x = 0 0 = lim
n→∞ lim
x0+fn(x)6= lim
x0+lim
n→∞ fn(x) = 1
fn:IRSn=
n
X
k=0
fk.
PfnS I Sn
S I PfnS I
SnS I
PfnI
Panan
nsup
xI|fn(x)|=kfnkanPan<)
PfnI,
I
x n
P|fn(x)|nPan
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !