E+
R C
N E
N:E→R+
(N1) ∀X∈E , [N(X) = 0 ⇐⇒ X= 0]
(N2) ∀X∈E , N(λX) = |λ|N(X)
(N3) ∀(X, Y )∈E2, N(X+Y)≤N(X) + N(Y)
(E, N )N(f)
N(f) = kfk
(E, kk)
d(X, Y ) = kX−YkE
kk
d(X, Y ) = 0 kX−Yk= 0 (N1) X=Y.
d(X, Y ) = kX−Yk=k(−1)(Y−X)k=| − 1|.kY−Xk=d(Y, X)
d(X, Y ) = kX−Yk=kX−Z+Z−Yk ≤kZ−Xk+kZ−Yk=d(X, Z) +
d(Z, Y )
Rnk(x1, x2, . . . , xn)k2=px2
1+x2
2+. . . +x2
nk(x1, x2, . . . , xn)k∞=
max(|x1|,|x2|, . . . |xn|)k(x1, x2, . . . , xn)k1=|x1|+|x2|+. . . +|xn|
kk2,
. . .
Cnk(z1, z2, . . . , zn)k2=√z1z1+z2z2+. . . +znznk(z1, z2, . . . , zn)k∞=
max(|z1|,|z2|, . . . |zn|)k(z1, z2, . . . , zn)k1=|z1|+|z2|+. . . +|zn|
(E, kk)f
r B(f, r) = {g∈E, kf−gk< r}
f r B(f, r) = {g∈E, kf−gk ≤ r}
R2
kk2(x0, y0)
rkk∞(0,0) 1
(1,1),(−1,1),(−1,−1) (1,−1) kk1(0,0)
1 (1,0),(0,1),(−1,0) (0,−1)
N1N2
α β
∀x∈E , αN1(x)≤N2(x)≤βN1(x).