Les polynômes - Institut de Mathématiques de Toulouse

1
2
P Q
P=X4+ 6X3+ 8X26X9Q=X4+X3X1
P=X5+X4+X3X2X1Q=X53X4+ 5X35X2+ 3X1
P=X5+X+ 1 Q=X4+X+ 1
R[X]
R[X]
P|Qdeg(P) = deg(Q)λRP=λQ
P Q P =Q
P Q R[X]P|Q Q |P
PR[X]
P X a
P(Xa)(Xb)a6=b
a=b
a X4X+a X2aX + 1
a, b X2+ 2 X4+X3+aX2+bX + 2
n>1Xn+X+ 1 (X1)2
P z C\R
z P
z e z
(X22<(z)X+|z|2)eR[X]PR[X]
P c2nX2n+
c2(n1)X2(n1) +· · · +c2X2+c0r P r
P(X) = cdXd+cd1Xd1+· · ·+c1X+c0d
P Q(X) = c0Xd+c1Xd1+· · · +cd1X+cdP
2X4+ 3X3X2+ 3X+ 2 5X32X22X+ 5
r6= 0 P1/r Q
P r
P1/r P
PC[X]
P(X)=(Xr1)e1× · · · × (Xrn)en, riC, eiN,16i6n,
ri
P ei
P
ripgcd(P, P 0)
ripgcd(P, P 0)
deg(pgcd(P, P 0)) = deg(P)n
r1, r2, r3C
P= (Xr1)(Xr2)2(Xr3)3R[X].
D= pgcd(P, P 0)
(Xr1)(Xr2)(Xr3)
P D
(Xri) 1 6i63
pgcd
X33X2+ 4 X3+ 2X225X50 X4+X2+ 1
X56X4+ 10X3+ 4X224X+ 16 X54X4+X3+ 14X220X+ 8
8X444X3+ 54X225X+ 4
C
P(X) = X4(6 + i)X3+ 6(i+ 2)X24(2 + 3i)X+ 8i
R[X]C[X]
X3+ 2X2+ 2X+ 1 X4+X3+X2+X+ 1 2X43X3X23X+ 2
X33X4+ 1 X6+ 1 X43X24
X4+ 2X2+ 1 X8+ 2X6+ 3X4+ 2X2+ 1 X9+X6+X3+ 1
R[X]X63X5+ 6X47X3+ 6X23X+ 1
j
R[X]X4+ 2X3+ 5X2+ 4X+ 4
R[X]X6+ 2X5+ 3X4+ 4X3+ 3X2+ 2X+ 1
P(X)=8X3+ 4X22X1R[X]
R[X]X54X418X3+ 72X2+ 81X324
P(X) = 6X515X4+ 18X26X3R[X]
(X1)3(X+ 1)2(X2)
j=e2
3P(X) = X8+ 2X6+ 3X4+ 2X2+ 1
P P
PC[X]R[X]
P(X) = X4+X3X2+6 P(1+i)
PR[X]C[X]
P=X44X3+ 8X28X+ 4 R[X]
pgcd(P, P 0)
P
PC[X]R[X]
P(X)=2X5+ 5X4+ 8X3+ 7X2+ 4X+ 1
pgcd(P, P 0)
PR[X]
P(X) = X45X3+ 6X25X+ 1 r
r6= 0 r25r+ 6 5
r+1
r2= 0
r+1
r2s=r+1
rQ2
Q P C
X45X3+9X215X+18 R[X]
C[X] 6X4+X3+ (6i+ 10)X2+ (2 + i)X(4 + 2i)
C[X]X42(i+ 2)X3+ 6(i+ 1)X24(2i+ 1)X+ 4i
nN
C[X]R[X]Xn1
zC(z+ 1)n= (z1n)
R[X] (X+ 1)n(X1)n
P(r) = P0(r)=0 r P
r P 0r P
PC[X]P0|P P
PR[X] pgcd(P, P 0)=1 P
R[X]
PR[X]rRP0(r) = P00(r)=0 r P
PR[X]P0P
1 + j3
R[X] 2
R[X]
PC[X]>2C[X]
P(X) = αX3+βX2+γX +δR[X] 3 r=a
b
pgcd(a, b) = 1 P
a δ b α
P X 1
ab P (1)
a+b P (1)
Q(X) = 3X3+ 10X2+ 4X7
tRP(X) = X33X+t
tRP
t P R[X]
tpgcd(P, P 0)
αRP(X) = X4+ (α+ 1)X2+α
i P
X2+ 1 P P X2+ 1
α P R[X]
α P X33X2+ 2X
p, q p 6= 0 p
q P (X) = X3+pX +q
X3+pX +q3X2+p
P
PR[X]P(X2) =
(X2+ 1)P(X)
11P
QR[X]P(X)=(X21)Q(X)
deg(P(X2)) deg(P(X))
Q
PC[X]XP (X1) = (X2)P(X)
0 1 P
rCP
r6= 0 r1P
r6= 1 r+ 1 P
P r 6∈ {0,1}
P
P
0 1 PC
PC[X]cXα(X1)β
cCα, β N
P
PC[X]P(X2) = P(X)P(X+ 1)
PC[X]P(X2) = P(X)P(X1)
C
(x+y= 11
xy = 30 (x+y= 2
xy = 2 (x+y= 2
xy =1
C
x+y+z= 4
xy +xz +yz =20
xyz =48
x+y+z= 2
xy +xz +yz = 1
xyz = 2
x+y+z=5
xy +xz +yz = 3
xyz = 9
x, y, z Cσ1, σ2, σ3x, y, z
σ1=x+y+z, σ2=xy +xz +yz, σ3=xyz.
x2+y2+z21
x+1
y+1
z
σ1, σ2, σ3
C
x+y+z= 2
x2+y2+z2= 6
1
x+1
y+1
z=1
2
x+y+z= 0
x2+y2+z2= 1
1
x+1
y+1
z=1
P(X) = X3+aX2+bX +cC[X]r1, r2, r3
a, b c Q r1r2, r1r3
r2r3
KQ,R C
K[X]
K[X]
1
2K
K
3 4
R[X]R C
Q[X] 3 Q R
R[X]
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !