1
◦
∼
2
P Q
P=X4+ 6X3+ 8X2−6X−9Q=X4+X3−X−1
P=X5+X4+X3−X2−X−1Q=X5−3X4+ 5X3−5X2+ 3X−1
P=X5+X+ 1 Q=X4+X+ 1
R[X]
R[X]
P|Qdeg(P) = deg(Q)λ∈RP=λQ
P Q P =Q
P Q ∈R[X]P|Q Q |P
P∈R[X]
P X −a
P(X−a)(X−b)a6=b
a=b
a X4−X+a X2−aX + 1
a, b X2+ 2 X4+X3+aX2+bX + 2
n>1Xn+X+ 1 (X−1)2
P z ∈C\R
z P
z e z
(X2−2<(z)X+|z|2)e∈R[X]PR[X]
P c2nX2n+
c2(n−1)X2(n−1) +· · · +c2X2+c0r P −r
P(X) = cdXd+cd−1Xd−1+· · ·+c1X+c0d
P Q(X) = c0Xd+c1Xd−1+· · · +cd−1X+cdP
2X4+ 3X3−X2+ 3X+ 2 5X3−2X2−2X+ 5
r6= 0 P1/r Q
P r
P1/r P
P∈C[X]
P(X)=(X−r1)e1× · · · × (X−rn)en, ri∈C, ei∈N∗,∀16i6n,
ri