exos continuite

Telechargé par rayane607080
lim
x2
2x34x2+x2
x24lim
x+exsin(ex)lim
x+
x2
ln(ex+ 1)
lim
x+
x2+x1xxlim
x+
xln(x)
(ln(x))xlim
x+
cos(x+x21)
x
lim
x0
x
arccos(x)π
2lim
x0xEnt 1
xlim
x+x1
x
lim
x0
xEnt(x)
p|x|lim
x→−1
x3+x2x1
x33x2lim
x+ln(x)
x1
x
lim
x+
sh(x)
exlim
x0
2
sin2(x)1
1cos(x)lim
x1+ln(x) ln(ln(x))
lim
x+qx+px+xxlim
x+xx+1 (x+ 1)xlim
x1
x21
(x1) ln(x)
f1(x) = ex1
x
f2(x) = 1x
1x2
f3(x) = x2ln(x)
sin(x)
f4(x) = Ent(x) + pxEnt(x)
f5(x) = 1
x13
(x1)2
f6(x) = e1
1x+ 2x3
f7(x) = xln x
x+ 1
f8(x) = xEnt 1
x
f9(x) = sup
nN
xn
n!
f f(x) = e1
x2x > 0f(x)=0 x60f
R
nNn f
f0 1 xRf(x) = f(x2)
fRxRfx+ 1
2=f(x)
fRf(0) = 1 xRf(2x) = f(x) cos(x)
fR(x, y)R2fx+y
2=1
2(f(x) + f(y))
f(0) = f(1) = 0 f
f0(x, y)R2fx+y
3=1
2(f(x) + f(y))
fR(x, y)R2f(x+y) = f(x)+f(y)
f
R Z
k[0,+[ 0 6x<y
x+y>1
k
[1,+[
fRff
kRk < 1
f[0,1] f(0) = f(1) x
fx+1
2=f(x)x f x+1
n=f(x)
n>2
fC1RxRf(f(x)) = ax +b
a]0,1[ b
xRf(ax +b) = af(x) + b f0(ax +b) = f0(x)
un+1 =aun+b
f0f
a > 1
I
x2022 x2021 =1I= [1,1]
ln x=x25
x+ 2 I= [1,10]
3x= 1 + ln(2 + x2)I= [0,1]
ex= 2 + x[ln 2,2 ln 2]
x33x2=1I= [1,1]
0.01
nNfnfn(x) = xn+ 9x24
fn(x)=0
un
u1u2nNun0; 2
3
x]0,1[ fn+1(x)< fn(x)
(un)
(un)l
un
nl
fRf(x) = ex+x
fR
n f(x) = n
xn
(xn)
n>1 ln(nln n)6xn6ln n
(xn)xn
ln(n)
n fnfn(x) = x5+nx 1
fn
n>1unfn(un)=0
un61
n(un)
(nun)
n>1fnR+fn(x) = 1 + x+x2+··· +xn
fn(x)=2 un
n>2un]0; 1[
(un)
lim
n+un
n= 0
vn=un1
21
2+vnn+1
= 2vn
n>1gngn(x) = ex1
nx
gn]0; +[gn(x)=0
un
0< un<1
n(un)
gn+1(x)gn(x)gn(un+1)
(un)
lim
n+nun
(un)
unnxn+1 (n+ 1)xn= 1
nNfn(x) = nxn+1 (n+ 1)xn
u1
fn]0,+[
fn(x) = 1
1 + 1
n6un61 + 2
n(un)
βRvn=1 + β
nn
fn1 + β
n
(x1)ex= 1 α
α]1,2[
ε0< ε < α 1
lim
n+fn1 + αε
nlim
n+fn1 + α+ε
n
n01+ αε
n6un61+ α+ε
n
lim
n+n(un1)
(fn)
I
(fn)fxIlim
n+fn(x) = f(x)
(fn)fε > 0n0Nn>n0xI
|fn(x)f(x)|6ε
(fn)f(fn)f
fnI f
fn(x)f(x) 0
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !