Ix∈f−1(C∪D)⇔f(x)∈C∪D⇔f(x)∈C f(x)∈D⇔x∈f−1(C)x∈f−1(D)⇔x∈
f−1(C)∪f−1(D)f−1(C∪D) = f−1(C∪D)
Ix∈f−1(C∩D)⇔f(x)∈C∩D⇔f(x)∈C f(x)∈D⇔x∈f−1(C)x∈f−1(D)⇔x∈
f−1(C)∩f−1(D)f−1(C∩D) = f−1(C∩D)
⇒f x 6=y∈E f(x) = f(y) = z
A={x}B={y}A∩B=∅f(A)∩f(B) = {z}A, B ⊂E
f(A∩B)6=f(A)∩f(B)
⇐f f(A∩B)⊂f(A)∩f(B)
∀A, B ⊂E f(A)∩f(B)⊂f(A∩B)y∈f(A)∩f(B)y∈f(A)y∈f(B)
x∈A:y=f(x)x0∈B:y=f(x0)f x =x0∈A∩B
y=f(x)∈f(A∩B)
E, F f :E−→ F
A⊂E A ⊂−1
f(f(A)) B⊂F f(−1
f(B)) ⊂B
(i)f A ⊂E, −1
f(f(A)) ⊂A
(ii)f B ⊂F, B ⊂f(−1
f(B))
x∈A f(x)∈f(A)x∈−1
f(f(A)) A⊂−1
f(f(A))
y∈f(−1
f(B)) y∈B x ∈−1
f(B)y=f(x)x∈−1
f(B)
f(x)∈B y ∈B
f−1
f(f(A)) ⊂A x ∈−1
f(f(A)) f(x)∈f(A)
z∈A f(x) = f(z)f x =z x ∈A
A⊂E−1
f(f(A)) ⊂A f
x, z ∈E f(x) = f(z){x} ⊂ −1
f(f({x})) = −1
f(f({z})) = {z}x=z
f y ∈B x ∈E y =f(x)∈B x ∈−1
f(B)
y=f(x)∈f(−1
f(B))
B⊂F B ⊂f(−1
f(B)) y∈F B ={y}
B⊂f(−1
f(B)) −1
f(B)6=∅y
f:R→Rf(x) =|x|
f([1,2]), f(] −3,2]),−1
f(]0,1]),−1
f([−1,1]) −1
f([−2,0[)
g:R→Rg(x)x n ∈Z−1
g({n})
f([1,2]) = [1,2]
f(] −3,2]) = f(] −3,0] ∪[0,2]) = f(] −3,0]) ∪f([0,2]) = [0,3] ∪[0,2] = [0,3]
−1
f(]0,1]) = {x∈R: 0 <|x| ≤ 1}= [−1,0[∪]0,1] = [−1,1] \ {0}
−1
f([−1,1]) = [−1,1]
−1
f([−2,0[) = ∅
−1
g({n}) = {x∈R:g(x) = n}={x∈R:n≤x < n + 1}= [n, n + 1[
∀x∈R,x
1+|x|∈]−1,1[