corrige serie11

Telechargé par anas gourou
xR:yR, x +y > 0
xR,yR:x+y > 0
xR,yR:x+y > 0
xR:yR, y2> x
xR,yRx+y0xR
y≤ −x x +y0
xRy > x x +y > 0
xR,yR:x+y0
xR,yR:x+y0
x=1yRy2>1
xR:yR, y2x
nN,mN:m > n
mN:nN, m > n
xQ
+,yQ: 0 < y < x
nN, n > 3n > 6
nN,pN:n= 2p+ 1
xR, x < 2x2<4
m, n N,2|mn, 8|m2n2
n m =n+ 1 nN,mN:mn
mN:nN, m n
y=1
2xxQ
+,yQ:y0xy
xQ
+:yQ, y > 0xy
4>3 4 6nN, n > 3n6
4nN,pN:n6= 2p+ 1
x=3xR, x < 2x24
2-mn 2-m2-n m = 2p+ 1 n= 2q+ 1
m2n2= (2p+ 1)2(2q+ 1)2= 4p2+ 4p4q24p= 4(p(p+ 1) q(q+ 1)) 2 |p(p+ 1)
2|q(q+ 1) 8 |m2n2
P, Q, R
P(QR)(P Q)R
P Q P R Q R R
P Q (P
Q) (( P)Q)
P(QR)P(QR)P(Q R)(P Q)R)
P Q P Q
P(QR)(P Q)R(P Q)R
S T S S T T
IP P R R
IP P Q Q Q R R
S(PQ) (PQ)
IP P P Q S
IP P Q S
(PQ) (PQ)
I(PQ) (PQ)P Q P Q (P P ) (Q Q) (P P )
(PQ) (PQ)
qQxR\Qx+qR\Q
x+qQx= (x+q)qQ
qQxR\Qx.q R\Q
x.q Qx=x.q
qQ
xR+\Qz=x z Qz2=xQ
a, n ana
ln(3)
ln(2) /Q
a ana0= 1
anan+1 =an.a
ln(3)
ln(2) =p
qQp, q Zq6= 0 ln(3)
ln(2) >0p, q > 0
pln(2) = qln(3) epln(2) =eqln(3) 2p= 3q2p3q
3
n10 2nn3n10 2 (1 + 1/n)3
Sn=Pn
k=1 1
k(k+1) Sn=n
n+1
un=1+3+5+... + (2n1) un=n2nN
x0= 0 xn+1 =3
xn+ 6 xn2,nN
n10 (1 + 1/n)3= 1 + 3/n + 3/n2+ 1/n3(1 + 3/10 + 3/100 + 1/1000) = 1000+300+30+1
1000 =
1331
1000 2
n10 2nn3
n= 10 210 = 1024 103= 1000 n= 10
n10 n2n+1 = 2n.2n3(1 + 1/n)3= (n+ 1)3
n= 1 Sn=1
2n= 1
n1Sn=n
n+1 Sn+1 =Pn+1
k=1 1
k(k+1) =Sn+1
(n+1)(n+2) Sn+1 =
n
n+1 +1
(n+1)(n+2) =n(n+2)+1
(n+1)(n+2) =n+1
n+2 n+ 1
un=Pn
k=1(2k1) n= 1 u1= 1 = 12n= 1
n1n un+1 =un+ 2(n+ 1) 1 = un+ 2n+ 1 =
n2+ 2n+ 1 = (n+ 1)2
n= 0 x0= 0 2nNxn2xn+1 =3
xn+ 6 3
2 + 6 = 3
8 = 2
(un)nN
u0= 1 nN, un+1 =un
1 + un
unn
u0= 1 u1=1
2u2=1
3u3=1
4u4=1
5u5=1
6
un=1
n+1
n= 0 u0= 1
nNn un+1 =un
1+un=
1
n+1
1+ 1
n+1
=1
n+2
n+ 1
nN, un=1
n+1
n
X
k=1
(1)kk
un=Pn
k=1(1)kk
n= 2m
un=u2m=
m
X
k=1
(1)2k2k+
m
X
k=1
(1)2k1(2k1) =
m
X
k=1
2k
m
X
k=1
(2k1) = m=n
2
n
un=un1+ (1)nn=un1n=n1
2n=n+ 1
2
A B C E
A=BAB=AB
AB=ABA=B=
AB=ACB=C
A=B A B=AA=A A B=AA=A
AB=AB A =B
AAB=AB A AB A BB A B
BAB=AB B AB A BA B A
AB=AB(AB)\(AB)=(AB)(AB) = AB
AB=AB=A=B=
AB=AC B =C AA=
A∆(AB) = A∆(AC) (AA)∆B= (AA)∆C B =C
f:EF A B E C D F
f(AB) = f(A)f(B)f(AB)f(A)f(B)
1
f(CD) = 1
f(C)1
f(D)1
f(CD) = 1
f(C)1
f(D)
f⇔ ∀A, B E, f(AB) = f(A)f(B)
IAAB f(A)f(AB)f(B)f(AB)f(A)f(B)f(AB)
yf(AB)xAB y =f(x)
xA y f(A)f(AB)
xB y f(B)f(AB)
yf(AB)f(AB)f(A)f(B)
IABA f(AB)f(A)f(AB)f(B)f(AB)f(A)f(B)
Ixf1(CD)f(x)CDf(x)C f(x)Dxf1(C)xf1(D)x
f1(C)f1(D)f1(CD) = f1(CD)
Ixf1(CD)f(x)CDf(x)C f(x)Dxf1(C)xf1(D)x
f1(C)f1(D)f1(CD) = f1(CD)
f x 6=yE f(x) = f(y) = z
A={x}B={y}AB=f(A)f(B) = {z}A, B E
f(AB)6=f(A)f(B)
f f(AB)f(A)f(B)
A, B E f(A)f(B)f(AB)yf(A)f(B)yf(A)yf(B)
xA:y=f(x)x0B:y=f(x0)f x =x0AB
y=f(x)f(AB)
E, F f :EF
AE A 1
f(f(A)) BF f(1
f(B)) B
(i)f A E, 1
f(f(A)) A
(ii)f B F, B f(1
f(B))
xA f(x)f(A)x1
f(f(A)) A1
f(f(A))
yf(1
f(B)) yB x 1
f(B)y=f(x)x1
f(B)
f(x)B y B
f1
f(f(A)) A x 1
f(f(A)) f(x)f(A)
zA f(x) = f(z)f x =z x A
AE1
f(f(A)) A f
x, z E f(x) = f(z){x} ⊂ 1
f(f({x})) = 1
f(f({z})) = {z}x=z
f y B x E y =f(x)B x 1
f(B)
y=f(x)f(1
f(B))
BF B f(1
f(B)) yF B ={y}
Bf(1
f(B)) 1
f(B)6=y
f:RRf(x) =|x|
f([1,2]), f(] 3,2]),1
f(]0,1]),1
f([1,1]) 1
f([2,0[)
g:RRg(x)x n Z1
g({n})
f([1,2]) = [1,2]
f(] 3,2]) = f(] 3,0] [0,2]) = f(] 3,0]) f([0,2]) = [0,3] [0,2] = [0,3]
1
f(]0,1]) = {xR: 0 <|x| ≤ 1}= [1,0[]0,1] = [1,1] \ {0}
1
f([1,1]) = [1,1]
1
f([2,0[) =
1
g({n}) = {xR:g(x) = n}={xR:nx < n + 1}= [n, n + 1[
xR,x
1+|x|]1,1[
f:R]1,1[ f(x) = x
1+|x|f
f1
|x|<|x|+ 1 0 |x|
|x|+1 <11<x
|x|+1 <1
f x1, x2Rf(x1) = f(x2)
x1
|x1|+1 =x2
|x2|+1
|x1|
|x1|+1 =|x2|
|x2|+1 |x1|(|x2|+ 1) = |x2|(|x1|+ 1) |x1|=|x2|
x1x2x1=x2f
f y ]1,1[ y=f(x) = x
|x|+1 y
x
y0y=x
x+1 yx +y=x x =y
1y
y0y=x
x+1 yx +y=x x =y
1+y
x=y
1−|y|Ry]1,1[ f
f f1(y) = y
1−|y|
R
x, y R, xRycos2(x) + sin2(y) = 1
cl(0) R
xRycos2(x) + sin2(y) = 1 cos2(x) = 1 sin2(y) = cos2(y)
f(x) = cos2(x)xRyf(x) = f(y)R
cl(0) = {xR: cos2(x) = cos2(0) = 1}={xR: cos(x) = 1 cos(x) = 1}=πZ
R
x, y R, xSyx2y2=xy
xRx
xSyx2y2=xyx2x=y2y
f(x) = x2x xSyf(x) = f(y)S
cl(x) = {yR:x2y2=xy}
x2y2=xyx=y x =y cl(x) = {x, x}x6= 0 cl(0) = {0}
N
x, y N, xTy⇔ ∃kN:y=xk
{2,3}
xNx=x1xTxT
x, y NxTy yTx k, m Ny=xkx=ymxkm =x
km = 1 k=m= 1 x=yT
x, y, z NxTy yTz k, m Ny=xkz=ymz=xkm
xTzT2 3 2T3 3T2
M{2,3}k, m NM= 2k= 3m
E, F f :EF
AE f(1
f(f(A))) = f(A)
BF1
f(f(f
1
(B))) = f
1
(B)
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !