fR
f
∀A∈R,∃x∈R,|f(x)|> A.
∃A∈R,∀x∈R,|f(x)| ≤ A
fR
∃a∈R,∃b∈R,∀x∈R\[a, b], f(x)≥0.
∃a∈R,∃b∈R,∀x∈R, x /∈[a, b] =⇒f(x)≥0.
x∈Rg(x) = x2−3h(x) = cos(x)
g A ∈Rx=p|A|+ 4 g(x) = |A|+1 > A
∀A∈R,∃x∈R,|g(x)|> A.
g a =−√3b=√3x∈R
x /∈[a, b]|x|>√3x2−3≥0g
[a, b]∃a∈R,∃b∈R,∀x∈R, x /∈[a, b] =⇒g(x)≥0.
h A = 1 ∀x∈R,|h(x)| ≤ A
h
a b
b≥a h [a, b]
π6= 0 n∈Nnπ > b nπ /∈[a, b]h(nπ) = cos(nπ) = −1
∀a∈R,∀b∈R,∃x∈R\[a, b], f(x)<0
∀k∈Z,∃j∈Z, k2+k= 2j.
k∈Zk2+k=k(k+ 1)
k k k + 1
k2+k
k