Angles inscrits
Angle au centre
Et Polygones réguliers
Objectifs*
!"!Calculer!un!angle!en!u,lisant!la!propriété!de!langle!inscrit!et!
de!langle!au!centre.!
- Construire un polygone régulier.
I. Angles inscrits- angles au centre!
1) Introduction et définitions
est un
angle au centre.
BOA ˆ
Cest un angle
dont le sommet
est le centre
du cercle.
BJA 1
ˆ
BJA 2
ˆ
BJA 3
ˆ
, et
sont des angles inscrits.
Cest un angle dont
le sommet est
sur le cercle.
2) Propriétés
En mesurant les angles, on constate que!:
BJA 1
ˆ
BJA 2
ˆ
BJA 3
ˆ
mesurent 46°
BOA ˆ
et mesure 92°
Propriété!1
La mesure dun angle au centre est le double de
celle de langle inscrit qui intercepte le même arc.
Propriété!2
Deux angles inscrits qui interceptent
le même arc ont la même mesure.
II. Polygones réguliers
Un polygone régulier est un polygone inscrit dans un cercle
dont tous les côtés ont la même longueur.
O
120°
O 90°
O
72°
O
45°
O
60°
Triangle
équilatéral
Carré Pentagone
régulier
Hexagone
régulier
Octogone
régulier
Remarques!: - Il existe toujours une rotation laissant invariant un
polygone régulier.
- Langle au centre dun polygone régulier se calcule avec la
formule suivante
angle au centre = 360°
nb côtés polygone
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !