a b A ha, bi
a b
A a, b ∈Apgcd(a, b)
d∈Apgcd(a, b)d a b d |a d |b
a b d pgcd(a, b)
Apgcd(a, b)a, b ∈A
a, b 6= 0 {p1,...,ps}ab
a b a =pα1
1···pαs
sb=pβ1
1···pβs
sαi, βi∈Z≥0pmin{α1,β1}
1···pmin{αs,βs}
s= pgcd(a, b)
a= 0 pgcd(a, b) = b
A P (t)∈A[t]
pgcd 1 d
P P =de
Pe
P
P(t)Q(t)P(t)Q(t)
cont(P Q) = cont(P) cont(Q)P Q
P Q p
P Q p
P(t) = a0+a1t+..., Q(t) = b0+b1t+..., P(t)Q(t) = c0+c1t+...,
P i p -aik i ` j
p-bj
p-ak, p |ai(i= 0,...,k−1); p-b`, p |bj(j= 0,...,`−1).
ck+`=
k−1
X
i=0
aibk+`−i+akb`+
k+`
X
i=k+1
aibk+`−i=
k−1
X
i=0
aibj+akb`+
`−1
X
j=0
ak+`−jbj
p akb`p-ck+`
P=de
P Q =ee
Q d = cont(P)e= cont(Q)e
P , e
Q
P Q =de e
Pe
Qe
Pe
Qcont(P Q) = de
P(t)=(t+ 2)(2t+ 3)(3t+ 4) · · · (2011t+ 2012) ∈Z[t].
nt +n+ 1 n+ 1 −n= 1 P(t)
F(t, u)=(t+ 2)3−(u+ 3)2R[t, u]
F(t, u)G(t, u) = F(t−2, u −3) = t3−u2G
R[t]G=H1H2deguH1= deguH2= 1
G u R(t)R(t)
S I P (t, u)∈R[t, u]
P(a2−2, a3−3) = 0 a∈S.
IR[t, u]F(t, u)∈I
P1(a2−2, a3−3) = P2(a2−2, a3−3) = 0 (P1+P2)(a2−2, a3−3) = 0 P(a2−2, a3−3) = 0
Q∈R[t, u] (QP )(a2−2, a3−3) = 0 I
a∈RF(a2−2, a3−3) = a6−a6= 0 F∈I