faR,bR,xR, a f(x)bMR,x
R,|f(x)| ≤ M
faR,bR,xR, f(x)<
a f(x)> b MR,xR,|f(x)|> M
f g xR, f(x) = g(x)
xR, f(x)6=g(x)
x7→ x2
MR,xR,|x2|> M
MRx=p|M|+ 1 x2=|M|+1
x2> M x 7→ x2
x7→ cos2(x) + 2
xR,1cos(x)1xR,|cos(x)| ≤ 1
xR0cos2(x)1 2 cos2(x)+23
x
a= 2 b= 3
x2= cos2(x)+2
g:x7→ x2(cos2(x) + 2) R
g(0) = 3g(π) = π23>0g
]0, π[x]0, π[, g(x)=0 x]0, π[, x2= cos2(x) + 2
nN,(6|n4|n) =24|n
n= 12
n
nN,6|n4|n24 -n.
nN,(6|nn|40) =n∈ P
nN,6|n n|40 n /∈ P.
p∈ P,aN,bN,(p|a p|b=p|a+b
2)
p= 2 a= 4 b= 6 p∈ P p|a p|b p
a b
nN\ {0,1},p∈ P,q∈ P,2n=p+q
nN,2n1∈ P =n∈ P 2n1
n
nN, n /∈ P =2n1/∈ P
nNn n = 0
n= 1 n6= 0 n6= 1 n
r s n =rs r 6= 1 s6= 1
2n1
2n1=2rs 1 = (2r)s1a= 2r
2n1 = as1s= (a1)(as1+as2+···+a2+a+ 1) = (a1) Ps1
i=0 ai
r1a4a1>1s6= 1
2n1
2n1n
xR, x2x
x= 1/2x2= 1/4
x
xR,!yR, xy = 1
R
xR,(yR, xy 6= 1) (y1R,y2R, y16=
y2xy1=xy2= 1)
xR,!yR, xy = 1
xR,aZ,bZ,cZ, ax2+bx +c= 0
π
π2π
π
π
3
2
X32
x=3
2aZ,bZ,cZ, ax2+
bx +c6= 0 x
a6= 0 b c ax2+bx +c= 0
x ax3+bx2+cx = 0 x3= 2 x2= (bx c)/a
2a+b(bxc)/a+cx = 0 x=2abc/a
cb2/a a, b c
x x =3
2
2
3
2
cb2/a 6= 0
cb2/a = 0 x6= 0 2abc/a = 0 c=b2/a
2a3=b3a b
cb2/a = 0
R
xR, f(x) = 2x+ 3
f:RR,aR,bR,xR, f(x) = ax +b
y=ax +b x =c
fRxR, f(x) = x3aR,bR,x
R, f(x) = ax +b a RbRX3aX b
x
x3ax b= 0 f(x) = ax +b a b
fE, f f0
fE f f0xR, f(x) =
f(x)xR, f0(x) = f0(x)
f0
fE f0fxR, f0(x) =
f0(x)h h(x) = f(x)h
h0(x) = f0(x)xR, f0(x) =
h0(x)
f0=h0(fh)0= 0 fh
cR,xR, f(x) = h(x) + cxR, f(x) = f(x) + c
x= 0 f(0) = f(0) + c c = 0
xR, f(x) = f(x)f
fE, f f0
f=f0f0=f
cxR, f(x) = f(x) + c
c= 0 f
f(x) = x3+ 1 f0(x)=3x2f
!fE f0=f
f0=f
f0=f
f(x) = λexλ
fE, gE, f =gf f E
gf x Rgf(x) = g(f(x)) = g(f(x))
fxR, g f(x) = gf(x)gf
fE, gE, f =fg
f f(x) = x2g g(x) = x+ 1
fg(1) = f(g(1)) = f(0) = 0 fg(1) = f(g(1)) = f(2) = 4 fg(1) 6=fg(1)
fg
n
n
kN, k 2k2|n n 630
kN, k|n=k2|n n
n|n
n2|n n2> n
12
k∈ P, k|n=k2|n
n
n
k∈ P,j∈ P, n =kj n
k=j
kN,jN, n|k n|(k+j)
j k k +j
k k n k
k
n= 11 k= 18 j= 4
11|18 11|22
jN,kN, n|k n|(k+j)j
k
n= 1
j= 0 kN,1|k1|k
n= 2 j= 1 kN,2|k
2|(k+ 1)
n= 3
n
log10(2)
pZqNlog10(2) = p
qqlog10(2) = p
log10(2q) = p10log10(2) = 10p,2q= 10p= 2p5p
q1p1
p1 5|2p5p5|2q
log10(2)
2q= 2p5p
p=q p = 0 q
nNk0, . . . , n 1n
k+n
k+1=n!
k!(nk)! +n!
(k+1)!(n(k+1))! =n!k+1)+(nk)
(k+1)!(nk)! =
n!n+1
(k+1)!(n+1(k+1))! =n+1
k+1
1 / 20 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !