∃n∈N,6|n n|40 n /∈ P.
∀p∈ P,∀a∈N,∀b∈N,(p|a p|b=⇒p|a+b
2)
p= 2 a= 4 b= 6 p∈ P p|a p|b p
a b
∀n∈N\ {0,1},∃p∈ P,∃q∈ P,2n=p+q
∀n∈N,2n−1∈ P =⇒n∈ P 2n−1
n
∀n∈N, n /∈ P =⇒2n−1/∈ P
n∈Nn n = 0
n= 1 n6= 0 n6= 1 n
r s n =rs r 6= 1 s6= 1
2n−1
2n−1=2rs −1 = (2r)s−1a= 2r
2n−1 = as−1s= (a−1)(as−1+as−2+···+a2+a+ 1) = (a−1) Ps−1
i=0 ai
r≥1a≥4a−1>1s6= 1
2n−1
2n−1n
∀x∈R, x2≥x
x= 1/2x2= 1/4
x
∀x∈R,∃!y∈R, xy = 1
R
∃x∈R,(∀y∈R, xy 6= 1) (∃y1∈R,∃y2∈R, y16=
y2xy1=xy2= 1)
∀x∈R∗,∃!y∈R, xy = 1
∀x∈R,∃a∈Z∗,∃b∈Z,∃c∈Z, ax2+bx +c= 0