C
C
R2
C R2zCx
yR2
C11
0R2Ci0
1R2,
Cz=x+iy x
yR2, x, y R.
zk=xk+iykk= 1,2xk, ykR C = (C,+, .)
z1+z2= (x1+x2) + i(y1+y2)
z1z2= (x1x2y1y2) + i(x1y2+x2y1).
i2=1
z=x+iy ¯z=xiy |z|=x2+y2=|| x
y||R2z
x
yz¯z=|z|2
z̸= 0 1
z=¯z
|z|2=x
x2+y2iy
x2+y2.
e= cos θ+isin θ z
z=ρe,
ρ=|z|θ(x, y)
x z =x+iy =ρe
z1=ρ1e1z2=ρ2e2
z1z2= (ρ1ρ2)ei(θ1+θ2).
R2z=ρeρ
θ z1=1
ρez=ρe̸= 0 R2
z11
ρθ
R2x1
y1x2
y2=x1x2y1y2
x1y2+x2y1
x
yR2
x
y1
=1
x2+y2x
y.
C|.|:zC→ |z| ∈ R+
R2
B(z0, R) = {zC:|zz0|< R}
B(x0
y0, R) = {x
yR2: (xx0)2+ (yy0)2< R2}.
UR2CU
f:UCUC
UR2P Q :UR
f:x
yU
f(x, y) = P(x, y)
Q(x, y)R2.
f
x (x, y) = P
x (x, y)
Q
x (x, y)(= lim
h0
f(x+h, y)
f(x, y)
h),
f
y (x, y) = P
y (x, y)
Q
y (x, y)(= lim
h0
f(x, y +h)
f(x, y)
h).
f(x0, y0)
f(x, y) =
f(x0, y0) + d
f(x0, y0).xx0
yy0+o(||(xx0, yy0)||R2
=
f(x0, y0) + P
x (x0, y0)P
y (x0, y0)
Q
x (x0, y0)Q
y (x0, y0).xx0
yy0+o(||(xx0, yy0)||R2).
f
UCf:UC
f(z) = P(x, y) + iQ(x, y)z=x+iy
f:UCz0U
lim
zz0
f(z)f(z0)
zz0
,
f(z0)C
lim
zz0
f(z)f(z0)
zz0
=f(z0).
f f
f(z) = f(z0) + (zz0)f(z0) + o(zz0).
z=x+iy z0=x0+iy0f(z0) = α0+0
P(x, y) + iQ(x, y) = P(x0, y0) + iQ(x0, y0) + ((xx0) + i(yy0))(α0+0) + o(zz0),
P(x, y)
Q(x, y)=P(x0, y0)
Q(x0, y0)+α0β0
β0α0xx0
yy0+o(zz0).
f:UCzU
P
x (x, y) = Q
y (x, y),
Q
x (x, y) = P
y (x, y).
f(z) = P
x (x, y) + iQ
x (x, y) = Q
y (x, y)iP
y (x, y)
=P
x (x, y)iP
y (x, y) = Q
y (x, y) + iQ
x (x, y).
f(z) = α+
f
U f
f(z) = f(z0) + f(z0)(zz0) + o(zz0)
f(z0)f(z)z0f(z0) =
α0+0=ρ0e0(zz0)R2
α0β0
β0α0 xx0
yy0
ρ2
0cos θ0sin θ0
sin θ0cos θ0
f(z)f(z0) = ρ0e0(zz0) + o(zz0)
f:UR2
CC
R2R2
f+g fg f g
f+gfg+fg(fg)g
(fg)= (fg)g
(fg)(z) = f(g(z))g(z)fg
fg
f , ⃗g :R2R2
f=f1
f2g =g1
g2f=f1+if2g=
g1+ig2fk, gk:R2Rd(
fg) = d
fg.dg
R2R2
fg.g:CC
C
f(z) = znn0n1znzn
0= (zz0)(zn1+zn2z0+... +zzn2
0+zn1
0
(zn)=nzn1
C
C
1
zn1
zn
0=zn
0zn
znzn
0(1
zn)=n1
zn+1 (zn)=nzn1
f:z¯z
f:x
yx
y
x
1 0
01
fR2C˜
f:
UC˜
f(x, y) = f(z)z=x+iy
d˜
f(x, y) = ˜
f
x (x, y)dx +˜
f
y (x, y)dy L(R2;C),
˜
f(x, y) = ˜
f(x0, y0) + df(x0, y0).xx0
yy0+o(||(xx0, yy0)||R2)
=˜
f(x0, y0) + ˜
f
x (x0, y0) (xx0) + ˜
f
y (x0, y0) (yy0) + o(||(xx0, yy0)||R2),
˜
f
x (x0, y0)˜
f
y (x0, y0)
˜
f
x (x0, y0) = α0+0=f(z0),
˜
f
y (x0, y0) = β0+0=if (z0).
f
x (z) = ˜
f
x (x, y) (= P
x (x, y) + iQ
x (x, y)),
f
y (z) = ˜
f
y (x, y) (= P
y (x, y) + iQ
y (x, y)).
f
x
f
y C
x, y Rz=x+iy ¯z=xiy z ¯z
x=1
2(z+ ¯z)y=1
2i(z¯z)z¯z x
y
z
¯z
f
x =f
z
z
x +f
¯z
¯z
x ,
f
y =f
z
z
y +f
¯z
¯z
y ,
f
x =f
z +f
¯z,
f
y =if
z if
¯z.
z =1
2(
x i
y ),
¯z=1
2(
x +i
y ).
f
z (z) = f(z) (= 1
2((P+iQ)
x (x, y)i(P+iQ)
y (x, y))),
f
¯z(z) = 0 (= 1
2((P+iQ)
x (x, y) + i(P+iQ)
y (x, y))).
df(z) = f
z (z)dz =f(z)dz.
f
¯z= [P
x Q
y ] + i[Q
x +P
y ]
f
¯z= 0
R2r :t[a, b]r(t) = x(t)
y(t)R2
Γ = Im(r)Cr
z:t[a, b]z(t) = x(t) + iy(t).
dr =dx
dy =x(t)
y(t)dt dz
dz =dx +idy z(t)dt = (x(t) + iy(t)) dt.
fC0(Ω; C) Ω CΓ
Γ
f dz =b
t=a
f(z(t)) z(t)dt.
f(z) = P(x, y) + iQ(x, y)Cz=x+iy x, y RP, Q C0(Ω; R) Ω
R2
Γ
f dz =b
t=a
[P(x(t), y(t)) x(t)Q(x(t), y(t)) y(t)] dt
+ib
t=a
[Q(x(t), y(t)) x(t) + P(x(t), y(t)) y(t)] dt.
f: (x, y)R2
f(x, y) = P(x, y)
Q(x, y)R2f(z) =
P(x, y) + iQ(x, y)Cz=x+iy
CΓ
f dz
F=b
t=ax(t)y(t)
y(t)x(t).
f(x(t), y(t))dt R2,
zCxy
yx
fΓ
F=F1
F2Γf dz =F1+iF2
f(z) = y+ix z =x+iy ⃗r(t) = Rcos t
Rsin t
Γt[0,2π]
Γ
f dz =R22π
0
sin t(sin t)(cos t)(cos t)dt +iR22π
0
sin t(cos t) + cos t(sin t)dt = 0.
Γf dz Γ
1 / 8 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !