α
α= [a0, a1, . . . , aN, aN+1, . . . , aN+T, aN+1,··· , aN+T, aN+1, . . .]=[a0, . . . , aN, aN+1, . . . , aN+T].
α
β= [aN+1, . . . , aN+T]β= [aN+1, . . . , aN+T, β].
β
α∈Q(β)α
α=√d d
α[a0, a1, . . . , an]n
an= 2a0
d x2−dy2= 1
(x1, y1)Q(√d)M
x1+y1√d(1,√d)
n(x2
1−dy2
1)n= 1 ( xn
yn) = Mn(x1
y1)
n
(x1, y1)
(x1, y1)
(p, q)|√d−p
q|<1
q2
p
q√d
p
q√d
T√d n n + 1
Tpn
qn√d
(pn, qn)
n
α=√d
1
αn+2 =1
α1=α−a0
(qn+1 −a0qn)√d+dqn=pn√d+ (pn+1 −a0pn)
p2
n−dq2
n= (−1)n+1
√d√d= [a0, a1, . . . , aT]
TpT−1
qT−1= [a0, . . . , aT−1]T
p2T−1
q2T−1= [a0, . . . , a2T−1] (pk, qk)
M
d= 3,5,6,13,17,19,34,37,53
√34 = [5,1,4,1,10] √53 = [7,3,1,1,3,14]