∀∃ ∃!
E={n∈N/n > 2}x E x
∀x∈E, x > 2
∀x∈E, P (x)P(x)x
∀x∈E, x > 2∃x∈E:x≤2
x > 2x
>2x
P(x)x > 4P(5) 5 >4P(3)
3>4
P(x, , y, z)z=x+y P (1,3,4) 4 = 1 + 3
P(x)x
E P Q
[¬(∀x∈E, P (x))] ⇔ ∃x∈E, ¬(P(x))
[¬(∃x∈E, P (x))] ⇔ ∀x∈E, ¬(P(x))
[∀x∈E, (P(X)∧Q(x)] ⇔[(∀x∈E, P (x)) ∧(∀x∈E, Q(x))]
[∃x∈E, (P(X)∨Q(x))] ⇔[(∃x∈E, P (x)) ∨(∃x∈E, Q(x))]
(un)n∈N
(un)⇔(∃l∈R) (∀ > 0),(∃N∈N):(∀n∈N)
n≥N⇒ |un−l| ≤
(un)⇔(∀l∈R),(∃ > 0) : (∀N∈N)(∃n∈N)
n≥N|un−l|>
∀x∈R?,∃y∈R?:xy = 1 ∃y∈R?:∀x∈R?, xy = 1
P(x)x