th
th R R
xRth0(x) = 1
ch2(x)>0R
th R
th(x) = exex
ex+ex=1e2x
1 + e2xlim
x+e2x= 0 lim
x+th(x)=1
th(x) = e2x1
e2x+ 1 lim
x→−∞ e2x= 0 lim
x→−∞ th(x) = 1
th R]1,1[
th RI=]0,1[
xRth0(x) = ch2(x)sh2(x)
ch2(x)= 1 th2(x)
xR, th0(x)=1th2(x)
Argth ]1,1[ x]1,1[ x]1,1[
x]1,1[ y=Argth(x)th(y) = x th(y) = eyey
ey+ey=th(y)
Argth(x) = Argth(th(y)) = Argth(th(y)) = y=Argth(x)
Argth
th Rth0(x) = 1
ch2(x)R
Argth th(R) =] 1,1[ x]1,1[
Argth0(x) = 1
th0(Argth(x)) =1
1th2(Argth(x)) =1
1x2
Argth ]1,1[ x]1,1[, Argth0(x) = 1
1x2
x]1,1[ y=Argth(x)
x=th(y) = eyey
ey+ey=e2y1
e2y+ 1 (e2y+ 1)x=e2y1e2y(x1) = 1x e2y=1 + x
1x
x]1,1[ 1 + x
1x>0 2y= ln 1 + x
1x
x]1,1[, Argth(x) = 1
2ln 1 + x
1x
x6= 0 J y0+3
xy=1
x(1 x2)
y0+3
xy= 0
a(x) = 3
xa J A(x) = 3 ln(x)
x7→ ke3 ln(x)kRJRx7→ k
x3
fpfp(x) = k(x)
x3k J
f0
p(x) = k0(x)x33x2k(x)
x6=k0(x)
x33k(x)
x4
fp
f0
p(x) + 3
xfp(x) = 1
x(1 x2)
k0(x)
x33k(x)
x4+3
x
k(x)
x3=1
x(1 x2)
k0(x)
x3=1
x(1 x2)
k0(x) = x2
1x2=x2
x21=x21+1
x21=x21
x21+1
x21=11
x21=1 + 1
1x2
k(x) = x+Argth(x)
S=JR:x7→ kx+Argth(x)
x3, k R
f(x) = C C R R
xR, f(2x) = 2f(x)
1 + f(x)2C=2C
1 + C2
C(1 + C2)=2C C(1 + C22) = 0 C(C21)2
C= 0 C= 1 C=1
f0f1f≡ −1
f f(0) = 2f(0)
1 + f(0)2
f(0) 1
xR, f(x) =
2fx
2
1 + fx
22
xR:f(x)1 =
2fx
2(1 + fx
22)
1 + fx
22=2fx
2+1+fx
22
1 + fx
22=fx
212
1 + fx
220
xR, f(x)1
xR:f(x) + 1 = fx
212
1 + fx
220
xR,1f(x)
xR,f(2x) = 2f(x)
1 + f(x)2f
=2(f(x))
1+(f(x))2
=2(f)(x)
1+(f)(x)2
ff
th R
xR,2th(x)
1 + th(x)2= 2
exe
x
ex+e
x
1 + exe
x
ex+e
x2
= 2 (ex+ex)2exe
x
ex+e
x
(ex+ex)2+ (exex)2
= 2(ex+ex)(exex)
2e2x+ 2e2x
=e2xe2x
e2x+e2x
=th(2x)
th
lim
n+
x0
2n= 0 lim
n+2n= +
f0 0 un=fx0
2nlim
n+fx0
2n=f(0) = 1
lim
n+un= 1
nN, un=fx0
2n=f2×x0
2n+1 =
2fx0
2n+1
1 + fx0
2n+1 2f
un+1 =x0
2n+1
nN, un=2un+1
1 + u2
n+1
nN,2
1 + u2
n+1
>0un=un+1 ×2
1 + u2
n+1
unun+1
nN:
un+1 un=un+1 2un+1
1 + u2
n+1
=un+1 12
1 + u2
n+1 =un+1 1 + u2
n+1 2
1 + u2
n+1 =un+1 u2
n+1 1
1 + u2
n+1
u0>0nNun+1 un
nN, un>0un+1 >0
• ∀nNun+1 =fx0
2n+1 xR1f(x)11fx0
2n+1 1
0fx0
2n+1 21u2
n+1 10
1 + u2
n+1 >0u2
n+1 1
1 + u2
n+1 0
un+1 un0
(un)
u0>0 (un)nNunu0=f(x0)
f(x0)1f(x0)6=f(0) = 1 f(x0)<1
nNun<1 (un) lim
n+un= 1
u0= 0 (un) lim
n+un= 1
u0<0nNun<0 lim
n+un= 1
ff f(0) = 1 (f)(0) = 1
ff
f(0) = 1
x0f(x0)6=f(0)
f(0) = 1 f(0) = 1fR
PR= (O,
i ,
j). O0(5; 2)
u=1
2
i3
2
j
v=3
2
i1
2
j .
2
R0= (O0,
u ,
v)
M(x, y)R
R0
DPR2x+ 2y5=0.
D R D R0
A(1,4) R R0
CA2
AD
B(0,1 + 3) C R
TCB
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !