R
R
xR\Q(p, q)Z×N
xp
q
<1
q2
un=1
nsin n
A B Mn(R)A
PR[X]P(0) = 1 B=AP (A)QR[X]
Q(0) = 1 A=BQ(B)
E p q L(E)
pq=q q p=p p q
EC(a, b)C2f g
L(E)
fggf=af +bg
f g
nNA B Mn(C)λ1, . . . , λn, λn+1
C1in+ 1 A+λiB
A B
ϕM2(C)C
A, B ∈ M2(C), ϕ(AB) = ϕ(A)ϕ(B)ϕλ0
0 1=λ
ϕ= det
EC
f∈ L(E)E f
ECu∈ L(E)
I1={PC[X]/P (u)=0} I2={PC[X]/P (u)}
I1I2C[X]
P1P2
P1P2
Q∈ I2uQ(u)
Φ: M2(R)R
A, B ∈ M2(R),Φ(AB) = Φ(A)Φ(B) Φ 0 1
1 06= Φ(I2)
Φ(O2) = 0
AΦ(A)=0
A∈ M2(R)B A
A
Φ(B) = Φ(A)
AΦ(A)6= 0
0··· 0 1
0··· 0 1
1··· 1 1
∈ Mn(R)
Mn=
0 (b)
(a) 0
∈ Mn(C)
Mn
k
eiθ+ ei= 1
θR
Sku
nN, un+k=un+un+k1
k Sk
A∈ Mn(C) tr(Am)0m+
A < 1
KA1, A2, . . . , AnMn(K)
A1A2. . . An=On
f:Mn(C)C
(A, B)∈ Mn(C)2, f(AB) = f(A)f(B)
A∈ Mn(C)
Af(A)6= 0
E u E
λ λ u λId
u
u
mL(E)v u v
m
u
EKu∈ L(E)PK[X]
P(u)=0 QK[X]RK[X]R(Q(u)) = 0
A∈ Mn(R)
A3=A2A2A2A
Ak+1 =Akk > 0
p > 0ApApA
nN
En={A∈ Mn(Z)| ∃mN, Am=In}
AEn
ω(A) = min {mN|Am=In}
ω(En)
R[X]
hP, Qi=Z1
0
P(t)Q(t) dt
AR[X]
PR[X], P (0) = hA, P i?
Qn(X) = 1
2nn!(X21)n(n)
n1Qnn]1 ; 1[
Qn=Xn+ (X21)Rn(X)
RnR[X]Qn(1) Qn(1)
(P, Q)R[X]2
hP, Qi=Z1
1
P(t)Q(t) dt
QnRn1[X]
kQnk2
(E, h., .i)
ϕ∈ O(E)M(ϕ) = Im(ϕIdE)F(ϕ) = ker(ϕIdE)
uE\ {0}suu
ϕ∈ O(E)M(ϕ)F(ϕ) = E
(u1, . . . , uk)
M(su1◦ ··· ◦ suk) = Vect(u1, . . . , uk)
(u1, . . . , uk)v1, . . . , vkE\ {0}
su1◦ ··· ◦ suk=sv1◦ ··· ◦ svk
(v1, . . . , vk)
m, n NM∈ Mm,n(R)
U∈ Om(R)V∈ On(R)N=UMV
(i, j)∈ {1, . . . , m}×{1, . . . , n}, i 6=j=Ni,j = 0
H H 6={0}
a= inf {h > 0|hH}
a6= 0 aH x H
a H =aZa= 0
ε > 0αH]0 ; ε]αZH
xRhαZH|xh| ≤ αε H
R
xR\QNN
f:{0, . . . , N} → [0 ; 1[
f(k) = kx − bkxcN+ 1 f
N[i/N ; (i+ 1)/N[i∈ {0, . . . , N 1}
k < k0∈ {0, . . . , N}
|f(k0)f(k)|<1
N
p=bk0xc−bkxc ∈ Zq=k0k∈ {1, . . . , N}
|qx p|<1/N
xp
q
<1
Nq <1
q2
N(p, q)
(p, q)Z×N
xp
q
<1
q2
π pn/qn
πpn
qn
<1
q2
n
qn+
|upn|=
1
pnsin pn
=
1
pnsin (pnqnπ)
1
|pn|
1
|pnqnπ|qn
pn1
π
(un)
{|sin n| | nN}={|sin(n+ 2kπ)| | nZ, k Z}=|sin (Z+ 2πZ)|
H=Z+ 2πZπ
HR|sin(.)|
R[0 ; 1] {|sin n| | nN}[0 ; 1]
n|sin n| ≥ 1/2
|un| ≤ 2/n
(un)
(un)
pNAp=On
P B =AP (A)
B=A+a2A2+··· +ap1Ap1
B2=A2+a3,2A3+···+ap1,2Ap1Bp2=Ap2+ap1,p2Ap1, Bp1=Ap1
Ap1=Bp1, Ap2=Bp2+bp1,p2Ap1A2=B2+b3,2B3+···+bp1,2Bp1
A=B+b2,1B2+··· +bp1,1Bp1
QR[X]Q(0) = 1 A=BQ(B)
pp=p(qp) = (pq)p=qp=p p q
p q p q
p q p =qp=pq=q
a=b= 0
f g
Cf
λ Eλ(f)6={0}g
g Eλ(f)
g
f Eλ(f)f g
a= 0 b6= 0
fgngnf=nbgnnN
u∈ L(E)7→ fuufL(E)
dim L(E)<+nNgn6=˜
0nb
nNgn=˜
0
ker g6={0}ker g f
fker g f g
b= 0 a6= 0
a6= 0 b6= 0
f(af +bg)(af +bg)f=b(fggf) = b(af +bg)
f af +bg
f g
M∈ Mn(C)Mn=On
(A+xB)n
n λ1, . . . , λn, λn+1
xC(A+xB)n=On
x= 0 An=Ony6= 0 y= 1/x
(yA +B)n=Ony0Bn=On
ϕ(I2)=1 P ϕ(P1) = ϕ(P)1A B
ϕ(A) = ϕ(B)
µ0
0 1 1 0
0µϕ1 0
0µ=µ
ϕλ0
0µ=λµ A ϕ(A) = det A
A A M2(C)
λ α
0λ
λ= 0 A2= 0 ϕ(A) = 0 = det A
λ6= 0 λ α
0λ1 0
0 2=λ α
0 2λ λ α
0 2λ
2ϕ(A) = 2λ2= 2 det A
f F f
fFF
f
f F
f
f∈ L(E)
F=
λSp fEλ(f)f
f
{0}CF=E f
I1u P1=πu
u
I2
(K[X],+)
I2K[X]I1
I1⊂ I2P1P2K[X]P2|P1
n E
v E vn=˜
0P2(u)
(P2)n(u) = ˜
0P1|Pn
2
P2|P1P1|Pn
2P2P1
u
P2=Y
λSp u
(Xλ)αλ
P2(u)
QλSp u(uλIdE)
1 / 13 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !