H H 6={0}
a= inf {h > 0|h∈H}
a6= 0 a∈H x ∈H
a H =aZa= 0
ε > 0α∈H∩]0 ; ε]αZ⊂H
x∈Rh∈αZ⊂H|x−h| ≤ α≤ε H
R
x∈R\QN∈N∗
f:{0, . . . , N} → [0 ; 1[
f(k) = kx − bkxcN+ 1 f
N[i/N ; (i+ 1)/N[i∈ {0, . . . , N −1}
k < k0∈ {0, . . . , N}
|f(k0)−f(k)|<1
N
p=bk0xc−bkxc ∈ Zq=k0−k∈ {1, . . . , N}
|qx −p|<1/N
x−p
q
<1
Nq <1
q2
N(p, q)
(p, q)∈Z×N∗
x−p
q
<1
q2
π pn/qn
π−pn
qn
<1
q2
n
qn→+∞
|upn|=
1
pnsin pn
=
1
pnsin (pn−qnπ)
≥1
|pn|
1
|pn−qnπ|≥qn
pn→1
π
(un)
{|sin n| | n∈N}={|sin(n+ 2kπ)| | n∈Z, k ∈Z}=|sin (Z+ 2πZ)|
H=Z+ 2πZπ
HR|sin(.)|
R[0 ; 1] {|sin n| | n∈N}[0 ; 1]
n|sin n| ≥ 1/2
|un| ≤ 2/n
(un)
(un)
p∈N∗Ap=On
P B =AP (A)
B=A+a2A2+··· +ap−1Ap−1
B2=A2+a3,2A3+···+ap−1,2Ap−1Bp−2=Ap−2+ap−1,p−2Ap−1, Bp−1=Ap−1
Ap−1=Bp−1, Ap−2=Bp−2+bp−1,p−2Ap−1A2=B2+b3,2B3+···+bp−1,2Bp−1
A=B+b2,1B2+··· +bp−1,1Bp−1
Q∈R[X]Q(0) = 1 A=BQ(B)
p◦p=p◦(q◦p) = (p◦q)◦p=q◦p=p p q
p q p q
p q p =q◦p=p◦q=q
a=b= 0
f g
Cf
λ Eλ(f)6={0}g