x= 1 x6= 1
x−1|x+3 ⇐⇒ x+3
x−1= 1+ 4
x−1∈Z⇐⇒ x−1∈ D(4) = {1,2,4,−1,−2,−4}
S={2,3,5,0,−1,−3}
x=−2x6=−2
x+ 2 |x2+ 2 ⇐⇒ x2+2
x+2 =x−2 + 6
x+2 ∈Z⇐⇒ x+ 2 ∈ D(6) =
{1,2,3,6,−1,−2,−3,−6}
S={−1,0,1,4,−3,−4,−5,−8}
xy = 3x+ 2y⇐⇒ (x−2)(y−3) = 6
S={(3,9),(4,6),(5,5),(8,4),(1,−3),(0,0),(−1,1),(−4,2)}
x, y ∈Z∗
1
x+1
y=1
5⇐⇒ 5x+ 5y=xy ⇐⇒ (x−5)(y−5) = 25
S={(6,30),(10,10),(30,6),(4,−20),(−20,4)}
x2−y2−4x−2y= 5 ⇐⇒ (x−2)2−(y+ 1)2= 8
x2−y2−4x−2y= 5 ⇐⇒ (x−y−3)(x+y−1) = 8
x−y−3 = a
x+y−1 = b⇐⇒ x=a+b
2+ 2
y=b−a
2−1
S={(5,0),(5,−2),(−1,0),(−1,−2)}
P2=P×P d
n/d N n
P2=nN
a−1 = bq +r0≤r < b
abn−1 = (bq +r+ 1)bn−1 = qbn+1 +bn(r+ 1) −1
0≤bn(r+ 1) −1< bn+1
abn−1bn+1
q
n∈N∗
n= 1 ϕ2ϕ0−ϕ2
1= 0 −1 = −1
n≥1
ϕn+2ϕn−ϕ2
n+1 = (ϕn+ϕn+1)ϕn−ϕn+1(ϕn+ϕn−1) = ϕ2
n−ϕn+1ϕn−1=
HR −(−1)n= (−1)n+1
ϕn∧ϕn+1 = 1
uϕn+vϕn+1 = 1 u, v ∈Z
m∈N∗
m= 1 ϕn+1 =ϕ1ϕn+1 +ϕ0ϕnϕ1= 1 ϕ0= 0
n≥1
ϕn+m+1 =ϕ(n+1)+m=
HR ϕmϕn+2+ϕm−1ϕn+1 =ϕmϕn+1+ϕmϕn+ϕm−1ϕn+1 =ϕm+1ϕn+1+ϕmϕn
pgcd(ϕm+n, ϕn) = pgcd(ϕmϕn−1+ϕm−1ϕn, ϕn) = pgcd(ϕmϕn−1, ϕn) = pgcd(ϕm, ϕn)
ϕn∧ϕn−1= 1
∀q∈Nϕm∧ϕn=ϕm+qn ∧ϕn
pgcd(ϕm, ϕn) = pgcd(ϕn, ϕr)
m=nq +r q ∈N