Z
x1|x+ 3 x+ 2 |x2+ 2
Z2
xy = 3x+ 2y1
x+1
y=1
5x2y24x2y= 5
nNN n P
n N P
aZbNq a 1
b
nN(abn1)
bn+1
(ϕn)nN
ϕ0= 0, ϕ1= 1 nN, ϕn+2 =ϕn+1 +ϕn
nN, ϕn+1ϕn1ϕ2
n= (1)n
nN, ϕnϕn+1 = 1
nN,mN, ϕn+m=ϕmϕn+1 +ϕm1ϕn
m, n N,pgcd(ϕn, ϕm+n) = pgcd(ϕn, ϕm)
pgcd(ϕm, ϕn) = pgcd(ϕn, ϕr)r
m n
pgcd(ϕm, ϕn) = ϕpgcd(m,n)
a b
a= 33 b= 24
a= 37 b= 27
a= 270 b= 105
a, b, d Z
(u, v Z, au +bv =d)pgcd(a, b)|d
2n+ 4 3n+ 3 1,2,3
d, m N
pgcd(x, y) = d
ppcm(x, y) = m
(x, y)N2
N2
pgcd(x, y) + ppcm(x, y) = x+y
N2
pgcd(x, y)=5
ppcm(x, y) = 60 x+y= 100
pgcd(x, y) = 10
a, b Z
ab= 1 (a+b)ab = 1
pgcd(a+b, ppcm(a, b))
nN
(n2+n)(2n+ 1) = 1 (3n2+ 2n)(n+ 1) = 1
nNn+ 1 2n+ 1
n+ 1 |2n
n
a b c Z
pgcd(a, bc) = pgcd(a, c)
a b
(u, v)Z2au +bv = 1
(u0, v0)
(u0+kb, v0ka)
kZ
nN(an, bn)N2
(1 + 2)n=an+bn2
a2
n2b2
n
anbn
a b d Nab
!(d1, d2)N2, d =d1d2, d1|a d2|b
nN
ai=i.n!+1
i∈ {1, . . . , n + 1}
n2N n N
4n3+ 6n2+ 4n+ 1 nNn4n2+ 16 nZ
n
n n!+2
1 000
n2 2n1
n
a > 1n > 0
an+ 1 n
a, b N\ {0,1}nN
an+bnn
E={4k1|kN}nE p P E p |n
p p =1 mod 4
nNnQ⇒ ∃mN, n =m2
2/Q3/Q
xQnNxnZxZ
a, b Nm, n am=bn
cNa=cnb=cm
n p p
(E): xn+an1xn1+··· +a1x+a0= 0
x a0, a1, . . . , an1
(E)
p∈ P αNpα
nN\ {0,1}n=QN
k=1 pαk
kn
nN\ {0,1}
n=
N
Y
i=1
pαi
i
d(n)n σ(n)
d(n) =
N
Y
i=1
(αi+ 1) σ(n) =
N
Y
i=1
pαi+1
i1
pi1
σ:ZNnZn
p∈ P αNσ(pα)
a, b Z
d ab
d=d1d2d1d2a b
a b σ(ab) = σ(a)σ(b)
σ(n)n
p∈ P nZvp(n)p
n
v2(1 000!) = 994
vp(n!)
xR,bpxc
p=bxc
Pn > 0vp(n)
p n bxc
x π(x)
x
vp(n!) = P+
k=1 jn
pkk
2n
nQp∈P;p2npbln(2n)
ln pc
2n
n(2n)π(2n)
x
ln x= O(π(x)) x+
p
k∈ {1,2, . . . , p 1}, p |p
k
nZ, npnmod p
n2
a∈ {1, . . . , n 1}, an11 [n]
n
n
n p n p2n p 1
n1
aZ, ana[n]
x= 1 x6= 1
x1|x+3 x+3
x1= 1+ 4
x1Zx1∈ D(4) = {1,2,4,1,2,4}
S={2,3,5,0,1,3}
x=2x6=2
x+ 2 |x2+ 2 x2+2
x+2 =x2 + 6
x+2 Zx+ 2 ∈ D(6) =
{1,2,3,6,1,2,3,6}
S={−1,0,1,4,3,4,5,8}
xy = 3x+ 2y(x2)(y3) = 6
S={(3,9),(4,6),(5,5),(8,4),(1,3),(0,0),(1,1),(4,2)}
x, y Z
1
x+1
y=1
55x+ 5y=xy (x5)(y5) = 25
S={(6,30),(10,10),(30,6),(4,20),(20,4)}
x2y24x2y= 5 (x2)2(y+ 1)2= 8
x2y24x2y= 5 (xy3)(x+y1) = 8
xy3 = a
x+y1 = bx=a+b
2+ 2
y=ba
21
S={(5,0),(5,2),(1,0),(1,2)}
P2=P×P d
n/d N n
P2=nN
a1 = bq +r0r < b
abn1 = (bq +r+ 1)bn1 = qbn+1 +bn(r+ 1) 1
0bn(r+ 1) 1< bn+1
abn1bn+1
q
nN
n= 1 ϕ2ϕ0ϕ2
1= 0 1 = 1
n1
ϕn+2ϕnϕ2
n+1 = (ϕn+ϕn+1)ϕnϕn+1(ϕn+ϕn1) = ϕ2
nϕn+1ϕn1=
HR (1)n= (1)n+1
ϕnϕn+1 = 1
n+vϕn+1 = 1 u, v Z
mN
m= 1 ϕn+1 =ϕ1ϕn+1 +ϕ0ϕnϕ1= 1 ϕ0= 0
n1
ϕn+m+1 =ϕ(n+1)+m=
HR ϕmϕn+2+ϕm1ϕn+1 =ϕmϕn+1+ϕmϕn+ϕm1ϕn+1 =ϕm+1ϕn+1+ϕmϕn
pgcd(ϕm+n, ϕn) = pgcd(ϕmϕn1+ϕm1ϕn, ϕn) = pgcd(ϕmϕn1, ϕn) = pgcd(ϕm, ϕn)
ϕnϕn1= 1
qNϕmϕn=ϕm+qn ϕn
pgcd(ϕm, ϕn) = pgcd(ϕn, ϕr)
m=nq +r q N
1 / 12 100%