IR
(fn)f
g
(gfn)
(fn) (gn)
f g
(fngn)fg
(fn) [a;b]
fnf
inf
[a;b]fninf
[a;b]f
(fn) [a;b]R
f: [a;b]R(xn) [a;b]
x
fn(xn)
n+f(x)
(Pn)R R
fRf
nN
un(x) = xnln x x ]0 ; 1] un(0) = 0
(un)n1[0 ; 1]
fn: [0 ; +[R
fn(x) = x
n(1 + xn)
un(x) = enx sin(nx)xR+
(un) [0 ; +[
[a; +[a > 0
[0 ; +[
fn(x) = nx2enx xR+
(fn)R+[a; +[a > 0
fn(x) = 1
(1 + x2)nxR
(fn)R]−∞;a][a; +[
a > 0
fn(x) = x2sin 1
nxxRfn(0) = 0
(fn)R
(fn) [a;a]a > 0
R(fn)
fn(x) = sinn(x) cos(x)
(fn)
fn(x) = nx2enx
1ex2
x0
fp(x) = 1
(1 + x)1+1/p
(fp)pN
fn(x) = 2nx
1 + n2nx2xR
fn(x)=4n(x2nx2n+1 )x[0 ; 1]
αRfn: [0 ; 1] R
fn(x) = nαx(1 x)n
(fn)
αR
nNfnR+
fn(x) = 1x
nnx[0 ; n[fn(x)=0 xn
(fn)
fn:R+R
fn(x) = 1 + x
nn
(fn)
xR+, fn(x)lim fn(x)
tR+
tt2
2ln(1 + t)t
(fn) [0 ; a]
a > 0
(fn)R+
fn: [0 ; 1] R
fn(x) = n2x(1 nx)x[0 ; 1/n]fn(x)=0
(fn)
Z1
0
fn(t) dt
(fn)
[a; 1] a > 0
x[0 ; π/2] fn(x) = nsin xcosnx
(fn)
In=Zπ/2
0
fn(x) dx
(fn)
]0 ; π/2]
fn(x) = x(1 + nαenx)R+
αRnNf
α
lim
n+Z1
0
x(1 + nenx) dx
(fn)R+
f0(x) = x fn+1(x) = x
2 + fn(x)nN
(fn)n0R+
E f : [0 ; 1] R+
Φ(f)(x) = Zx
0pf(t) dt
fE
f0= 1 fn+1 = Φ(fn)nN
(fn)
f= lim(fn)
f
fn:R+R
fn(x) = x+ 1/n
(fn) (f2
n)
fn:RR
fn(x) = px2+ 1/n
fnC1(fn)
RfC1
f:RR
gn:x7→ n(f(x+ 1/n)f(x))
f0
fn: [0 ; 1] R(fn)
U ω
6= 1
z7→ 1
zω
U
f:RRC1nN
un(t) = n(f(t+ 1/n)f(t))
(un)n1
R
(un) [0 ; 1] R
u0(x) = 1 nN, un+1(x) = 1 + Zx
0
un(tt2) dt
x[0 ; 1]
0un+1(x)un(x)xn+1
(n+ 1)!
x[0 ; 1] (un(x))
(un)u
u0(x) = u(xx2)
x > 0
S(x) =
+
X
n=0
(1)n
n+x
SC1R
+
S
x > 0, S(x+ 1) + S(x) = 1/x
S
S+
x > 0
F(x) =
+
X
n=0
(1)n
n+x
F
FC1C
F(x) + F(x+ 1)
x > 0
F(x) = Z1
0
tx1
1 + tdt
F+
x > 0
S(x) =
+
X
n=0
n
Y
k=0
1
(x+k)
S]0 ; +[
S(x)S(x+ 1)
S(x) +
nNxR+
fn(x) = th(x+n)th n
Pfn
S=P+
n=0 fn
R+
xR+, S(x+ 1) S(x) = 1 th x
S+
f:R+R
g:R+R
xR+, g(x+ 1) g(x) = f(x)
xR,
+
X
n=0
xn
n!= ex
x > 0
S(x) =
+
X
n=0
(1)n
n!(x+n)
SC1R
+
S
xS(x)S(x+ 1) = 1
e
S+
S
f(x) = 1
x+
+
X
n=1
1
x+n+1
xn
xR\Z
f
fx
2+fx+ 1
2= 2f(x)
xR\Z
f C ([0 ; 1],R)
x[0 ; 1], f(x) =
+
X
n=1
f(xn)
2n
(E): f(2x)=2f(x)2f(x)2
R
h:RRf(x) = xh(x)xR
h f (E)
R R
h0:x7→ 1nN
hn+1(x) = hnx
2x
2hnx
22
x[0 ; 1] Tx:y7→ yxy2/2Tx
[0 ; 1] Tx[0 ; 1][0 ; 1]
(hn)nN[0 ; 1]
(E)
[0 ; 1]
(E)
R+
nNunR
+
un(x) = xln1 + 1
nln1 + x
n
1 / 43 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !