a E k
ϕ:E×ER
ϕ(x, y) = hx, yi+khx, aihy, ai
ϕ
E=C1([0 ; 1],R)f, g E
ϕ(f, g) = Z1
0
f0(t)g0(t) dt+f(1)g(0) + f(0)g(1)
ϕ E
B
x, y B t ]0 ; 1[
k(1 t)x+tyk<1
E=C([a;b],R)
(f|g) = Zb
a
f(t)g(t) dt
F E
{0}
x1, . . . , xnE
MR
(ε1, . . . , εn)∈ {1,1}n,
n
X
k=1
εkxk
M
n
X
k=1 kxkk2M2
E=C([0 ; 1],R)
hf, gi=Z1
0
f(x)g(x) dx
fE F f
x[0 ; 1], F (x) = Zx
0
f(t) dt
v E v(f) = F
v
f, g E, hv(f), gi=hf, v(g)i
vv
F E
F=¯
F
e= (ei)1inf= (fj)1jn
E
u∈ L(E)
A=
n
X
i=1
n
X
j=1
(fi|u(ej))2
A
R[X]
hP, Qi=Z1
0
P(t)Q(t) dt
AR[X]
PR[X], P (0) = hA, P i?
E=R[X]
ϕ(P, Q) = R1
0P(t)Q(t) dt E
θ:ERθ(P) = P(0)
Q P E
θ(P) = ϕ(P, Q)
Qn(X) = 1
2nn!(X21)n(n)
n1Qnn]1 ; 1[
Qn=Xn+ (X21)Rn(X)
RnR[X]Qn(1) Qn(1)
(P, Q)R[X]2
hP, Qi=Z1
1
P(t)Q(t) dt
QnRn1[X]
kQnk2
R[X]
hP, Qi=Z1
1
P(t)Q(t) dt
(Pn)
Pnn
Pn
n1Pn+1 XPn
Rn2[X]
λnR
Pn+1 =XPn+λnPn1
nNE=Rn[X]
h · ,· i: (P, Q)E27→ hP, Qi=Z+
0
P(t)Q(t)etdt
h · ,· i
F={PE, P (0) = 0}d(1, F )
(P0, . . . , Pn) (1, X, . . . , Xn)
Pk(0)2
F(P0, . . . , Pn)
d(1, F )d(1, F )
F= (x1, . . . , xn)n2
1i6=jn, (xi|xj)<0
n1F
x1, x2, ..., xn+2
E n N
1i6=jn+ 2,(xi|xj)<0
a E α R
fα:x7→ x+α(a|x)a
fαfβfα
fα
E=C1([0 ; 1],R)
f, g E, hf, gi=Z1
0
f(t)g(t) dt+Z1
0
f0(t)g0(t) dt
h., .iE
V={fE|f(0) = f(1) = 0}W=fE|fC2f00 =f
V W
W
α, β R
Eα,β ={fE|f(0) = α f(1) = β}
inf
fEα,β Z1
0f(t)2+f0(t)2dt
ϕ:R[X]×R[X]R
ϕ(P, Q) = Z+
0
P(t)Q(t)etdt
ϕR[X]
ϕ(Xp, Xq)
inf
(a,b)R2Z+
0
et(t2(at +b))2dt
inf Z1
0
t2(ln tat b)2dt, (a, b)R2
(en)nN
E x E
kxk2=
+
X
n=0(en|x)
2
A∈ Mn(R)
X∈ Mn,1(R),kAXk≤kXk
k.k
X∈ Mn,1(R),
tAX
≤ kXk
A∈ Mn(R)
X∈ Mn,1(R),kAXk≤kXk
k.k
X∈ Mn,1(R),
tAX
≤ kXk
X∈ Mn,1(R)AX =XtAX =X
Mn,1(R) = Ker(AIn)Im(AIn)
A∈ Mn(R)
rg(tAA) = rg A
ϕ E
ϕ(x, x) = kxk2+khx, ai2
ϕ(a, a) = kak2+kkak4= (1 + k)
ϕ
1 + k > 0
1 + k > 0
k0ϕ(x, x)≥ kxk2
xE\ {0E}, ϕ(x, x)>0
k]1 ; 0[ k=α α ]0 ; 1[
ϕ(x, x) = kxk2αhx, ai2
hx, ai2≤ kxk2kak2=kxk2
ϕ(x, x)≥ kxk2αkxk2= (1 α)kxk2
xE\ {0E}, ϕ(x, x)>0
ϕ
ϕ1 + k > 0
ϕ E ×ER
fE
ϕ(f, f) = Z1
0
f0(t)2dt+ 2f(0)f(1)
Z1
0
f0(t) dt2
Z1
0
f0(t)2dt
Z1
0
f0(t)2dt(f(1) f(0))2
ϕ(f, f)f(1)2+f(0)20
ϕ(f, f)=0 f(0) = f(1) = 0 R1
0f0(t)2dt= 0
f
k(1 t)x+tyk ≤ (1 t)kxk+tkyk ≤ 1
kxk= 1 kyk= 1 (1 t)x ty
x y
fFf[a;b]
ε > 0,PR[X],kfPk,[a;b]ε
kfk2=Zb
a
f2=Zb
a
f(fP) + Zb
a
fP =Zb
a
f(fP)
Zb
a
f(fP)(ba)kfkkfPk(ba)kfkε
εkfk2= 0 f= 0 F⊂ {0}
F={0}
n= 1
n= 2
1 / 12 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !