TSI2
no2
t7→ t
(t+ 2)(t2+ 1) [0,+[ +
t
(t+ 2)(t2+ 1)
t+
t
t×t2
t+
1
t2
Z+
1
1
t2tZ+
1
t
(t+ 2)(t2+ 1) t
Z+
0
t
(t+ 2)(t2+ 1) t
α, β, γ
t[0,+[
t
(t+ 2)(t2+ 1) =α
t+βt +γ
t2+ 1 =α(t2+ 1) + (βt +γ)(t+ 2)
(t+ 2)(t2+ 1)
=(α+β)t2+ (2β+γ)t+ (α+ 2γ)
(t+ 2)(t2+ 1)
α+β= 0
2β+γ= 1
α+ 2γ= 0
β=α
γ=α/2
2αα/2 = 5α/2=1
α=2
5β=2
5γ=1
5x > 0
Zx
0
t
(t+ 2)(t2+ 1) t=2
5Zx
0
t
t+ 2 +1
5Zx
0
2t t
t2+ 1 +1
5Zx
0
t
t2+ 1
=2
5ln(x+ 2) + 2
5ln 2+1
5ln(x2+ 1) + 1
5arctan x
=1
5ln x2+ 1
(x+ 2)2+1
5arctan x+2
5ln 2
x+
Z+
0
t
(t+ 2)(t2+ 1) t=π
10 +2 ln 2
5
t= tan u t = (1 + tan2u)u u = arctan t
t7→ arctan tC1[0,+[ [0, π/2[
Zπ/2
0
sin u
2 cos u+ sin uu=Zπ/2
0
sin u
cos u
1
2 + sin u
cos u
u
=Zπ/2
0
tan u×1
2 + tan u×(1 + tan2u)u
1 + tan2u
=
t=tan uZ+
0
t
(t+ 2)(t2+ 1) t
Zπ/2
0
sin u
2 cos u+ sin uu=π
10 +2 ln 2
5
a b 0< a < b
h:t7→ eat ebt
t]0,+[a<b eat > ebt
?0
h(t) = eat ebt
t=1at +o(t)(1 bt +o(t))
t=(ba)t+o(t)
t=ba+o(1)
lim
t0h(t) = ba
h0Z1
0
eat ebt
tt
? t >1
06eat ebt
t6eat
t6eat
Z+
1
eat tZ+
1
eat ebt
tt
Z+
0
eat ebt
tt
(x, y)R20< x < y
u=at u =bt
Zy
x
eat ebt
tt=Zy
x
eat
ttZy
x
ebt
tt
Zy
x
eat ebt
tt=Zay
ax
eu
u/a
u
aZby
bx
eu
u/b
u
b
=Zay
ax
eu
uuZby
bx
eu
uu
Zy
x
eat ebt
tt="Zbx
ax
eu
uu+Zay
bx
eu
uu#"Zay
bx
eu
uuZby
ay
eu
uu#
Zy
x
eat ebt
tt=Zbx
ax
et
ttZby
ay
et
tt.
z > 0t[az, bz]
ebz
t6et
t6eaz
t
ebz Zbz
az
t
t6Zbz
az
et
tt6eaz Zbz
az
t
t
Zbz
az
t
t= ln(bz)ln(az) = ln b
a
ebz ln b
a6Zbz
az
et
tt6eaz ln b
a.
TSI2
x, y ]0,+[x<y
ebx ln b
aeay ln b
a6Zy
x
eat ebt
tt=Zbx
ax
et
ttZby
ay
et
tt6eax ln b
aeby ln b
a
y+
x]0,+[, ebx ln b
a6Z+
x
eat ebt
tt6eax ln b
a
lim
x0ebx ln b
a= lim
x0eax ln b
a= ln b
a
Z+
0
eat ebt
tt= ln b
a.
y+x0
ζ(2)
I0, I1J0
I0=Zπ/2
0
t=π
2;I1=Zπ/2
0
cos t t = [sin t]π/2
0= 1; J0=Zπ/2
0
t2t=t3
3π/2
0
=π3
24
J1u(t) = t2v0(t) = cos t
u0(t)=2t v(t) = sin t
Zπ/2
0
t2cos t t =t2sin tπ/2
0Zπ/2
0
2tsin t t
u(t)=2t v0(t) = sin t
u0(t)=2 v(t) = cos t
J1=π2
4 [2tcos t]π/2
0+ 2 Zπ/2
0
cos t t!=π2
42 [sin t]π/2
0=π2
42
I0=π
2;I1= 1; J0=π3
24 ;J1=π2
42.
t7→ cosnt n 0,π
2Zπ/2
0
cosnt t > 0
nNIn>0.
nNIn2
u(t) = cosn+1 t v0(t) = cos t
u0(t) = (n+ 1) sin tcosnt v(t) = sin t
In+2 =sin tcosn+1 tπ/2
0+ (n+ 1) Zπ/2
0
sin2tcosnt t
cos2x+ sin2x= 1
In+2 = (n+ 1) Zπ/2
0
(1 cos2t) cosnt t = (n+ 1)In(n+ 1)In+2
(n+ 2)In+2 = (n+ 1)In
In+2 =n+ 1
n+ 2In.
t[0, π/2] h(t) = π
2sin tt
h0(t) = π
2cos t1h00(t) = π
2sin t < 0t0,π
2
h00,π
2h0(0) = π
21>0h0(π/2) = 1<0
α= arccos 2
π
h(0) = 0 h[0, α]h>0
h[α, π/2] h(π/2) = 0 h>0
h[0, π/2] tπ
2sin t>t
t[0, π/2],06t6π
2sin(t).
t0,π
206t26π2
4sin2(t) = π2
4(1 cos2t) cosnt>0
06t2cosnt6π2
4(cosntcosn+2 t)
0π/2
06Zπ/2
0
t2cosnt6Zπ/2
0
π2
4(cosntcosn+2 t)
06Jn6π2
4(InIn+2).
In>0
06Jn
In
6π2
41In+2
In
06Jn
In
6π2
41n+ 1
n+ 2=π2
4×1
n+ 2
π2
4×1
n+ 2
n+0
lim
n+
In
Jn
= 0
In+2 JnJn+2
u(t) = cosn+2 t v0(t) = 1
u0(t) = (n+ 2) sin tcosn+1 t v(t) = t
In+2 =Zπ/2
0
cosn+2 t t =tcosn+2 tπ/2
0+ (n+ 2) Zπ/2
0
tsin tcosn+1 t t
TSI2
u(t) = sin tcosn+1 t v0(t) = t
u0(t) = cosn+2 t(n+ 1) sin2tcosnt v(t) = t2
2
In+2 = (n+ 2) ht2
2sin tcosn+1 tiπ/2
01
2Zπ/2
0
t2cosn+2 t t +n+ 1
2Zπ/2
0
t2sin2tcosnt t!
= (n+ 2) 1
2Jn+2 +n+ 1
2Zπ/2
0
t2(1 cos2t) cosnt t!
JnJn+2
In+2 = (n+ 2) 1
2Jn+2 +n+ 1
2(JnJn+2)
=n+ 2
2(n+ 1)Jn(n+ 2)Jn+2
In+2 =(n+ 1)(n+ 2)Jn(n+ 2)2Jn+2
2.
In
In+2
In
=n+ 1
n+ 2 =(n+ 1)(n+ 2)
2
Jn
In
(n+ 2)2
2
Jn+2
In
=(n+ 1)(n+ 2)
2
Jn
In
(n+ 2)2
2
n+ 1
(n+ 2)In+2
Jn+2
n+ 1
n+ 2 =(n+ 1)(n+ 2)
2Jn
In
Jn+2
In+2
(n+ 1)(n+ 2)
Jn
In
Jn+2
In+2
=2
(n+ 2)2.
n= 2k
J2k
I2k
J2k+2
I2k+2
=2
(2k+ 2)2=1
2(k+ 1)2.
k0n1
n1
X
k=0 J2k
I2k
J2k+2
I2k+2 =J0
I0
J2n
I2n
=1
2
n1
X
k=0
1
(k+ 1)2=1
2
n
X
k=1
1
k2=1
2Sn
lim
n+
J2n
I2n
= 0 (Sn)nN
ζ(2) = lim
n+Sn= lim
n+2J0
I0
J2n
I2n= 2 ×J0
I0
=π2
6
ζ(2) = π2
6
1 / 11 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !