TSI1
no2
n>1an=
n
k=1
1
k
n>1
anxnR
nN
16|an|=an6n
R1
n>1
znR2
n>1
zn
n
R1>R>R2
R1= 1 R2
αn=xn
n|αn+1|
|αn|=n
n+ 1|x|=1
1 + 1
n
|x| −
n+|x|
|x|<1|x|>1R2= 1 = R1
R= 1
x[1,1] F(x) =
n>1
anxnx]1,1[
(1 x)F(x) = (1 x)
+
n=1
anxn=
+
n=1
anxn
+
n=1
anxn+1
(1 x)F(x) =
+
n=1
anxn
+
n=2
an1xn=a1x+
+
n=2
(anan1)xn
a1= 1 n>2anan1=1
n
(1 x)F(x) =
+
n=1
1
nxn
x]1,1[
ln(1 + x) =
+
n=1
(1)n1
nxn
x(x) ] 1,1[
ln(1 x) =
+
n=1
(1)n1
n(x)n=
+
n=1
(1)2n1
nxn=
+
n=1
1
nxn=(1 x)F(x)
x]1,1[, F (x) = ln(1 x)
1x
+
n=0
n!
1×3× ··· × (2n+ 1)x2n+1
n!
1×3× ··· × (2n+ 1) =n!×2×4× ··· × 2n
1×2×3×4× ··· × 2n×(2n+ 1) =(n!)22n
(2n+ 1)!
αn=n!
1×3× ··· × (2n+ 1)x2n+1
|αn+1|
|αn|=(n+ 1)!
1×3× ··· × (2n+ 1) ×(2n+ 3)|x|2n+3 ×1×3× ··· × (2n+ 1)
n!|x|2n+1
=n+ 1
2n+ 3|x|2
n+|x|2
2
lim
n+|αn+1|
|αn|=|x|2
2
αn|x|2
2<1
|x|<2|x|>2
R=2
(E) : (x22)y+xy + 2 = 0
]2,2[
y+x
x22y=2
2x2
(E) ] 2,2[
(H) : y+x
x22y= 0 (x22̸= 0)
yH(x) = λex x
x22=λe1
2ln |x22|
(H) ] 2,2[ yH:x7→ λ
2x2
TSI1
2
2x2=2
21x2/2=2
1(x/2)2
]2,2[ x7→ 2
2x2
x7→ 2 arcsin x
2+K(KR)
(E)ypart(x) = λ(x)
2x2
y
part(x) + x
x22ypart(x) = 2
2x2λ(x)
2x2=2
2x2
λ(x) = 2
2x2
λ(x) = 2 arcsin x
2
ypart(x) = 2 arcsin x
2
2x2
(E) ] 2,2[ y:x7→ 2 arcsin x
2+λ
2x2
S(x) =
+
n=0
(n!)22n
(2n+ 1)!x2n+1 S(x) =
+
n=0
(n!)22n
(2n)! x2n
(x22)S(x) + xS(x) =
+
n=0
(n!)22n
(2n)! x2n+2
+
n=0
(n!)22n+1
(2n)! x2n+
+
n=0
(n!)22n
(2n+ 1)!x2n+2
=
+
n=1
(n1)!)22n1
(2n2)! x2n
+
n=0
(n!)22n+1
(2n)! x2n+
+
n=1
((n1)!)22n1
(2n1)! x2n
=2 +
+
n=1
[2n(2n1) 4n2+ 2n]((n1)!)22n1
(2n)! =2
S(E) ] 2,2[
S(x) = 2 arcsin x
2+λ
2x2λR
S(0) = 0
λ= 0
x]2,2[, S(x) = 2 arcsin x
2
2x2
I=+
0
x
x(1 + x);J=+
0
ln(x)
x(1 + x)x;K=+
0
xln(x)
(1 + x)2x
I
x7→ 1
x(1 + x)]0,+[
0
1
x(1 + x)
x0
1
x
1
0
x
x1
0
x
x(1 + x)
+1
x(1 + x)
x+
1
xx
x+
1
x3/2
+
1
x
x3/2+
1
x
x(1 + x)
I=+
0
x
x(1 + x)
u=x u = 1/(2x)x
x7→ xC1R
+R
+
I=+
0
2u
1 + u2= 2arctan(u)+
0=π
I=π
J
x3/4×ln(x)
x(1 + x)=x1/4ln(x)
1 + x
x00
x1/4ln(x)
x00
ln(x)
x(1 + x)=
x0o1
x3/4
c > 0x]0, c]
ln(x)
x(1 + x)
61
x3/4c
0
x
x3/4
c
0
ln(x)
x(1 + x)
J1=1
0
ln(x)
x(1 + x)x
TSI1
x5/4×ln(x)
x(1 + x)
x+
ln(x)
x1/4
x+0
ln(x)
x(1 + x)=
x+o1
x5/4
c > 0x>c06ln(x)
x(1 + x)61
x5/4+
c
x
x5/4
+
c
ln(x)
x(1 + x)
J2=+
1
ln(x)
x(1 + x)x
J
J
u= 1/x x = 1/u x =1/u2u
u7→ 1
uC1]0,1[
]1,+[
J1=1
+
ln(1/u)
1
u(1 + 1
u)×1
u2u=+
1
ln(1/u)
1
u(1 + 1
u)×1
u2u
=+
1
ln(u)
u
u(u+u
u)u=+
1
ln(u)
u(1 + u)
J2
J1=J2
J=J1+J2=J2+J2= 0
J= 0
K
lim
x0xln(x) = 0
lim
x0
xln(x)
1 + x= 0
xln(x)
1 + x
x+
ln(x)
xlim
x+
ln(x)
x= 0
lim
x+
xln(x)
1 + x= 0
K
u(x) = xln(x)v(x) = 1
(1 + x)2
u(x) = ln(x)
2x+1
xv(x) = 1
1 + x
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !