p0+p1+· · · +pn−1= Id Ek
x∈E x =p0(x) + p1(x) + · · · +pn−1(x)∈E0⊕E1⊕. . . En−1
EkE pk
EkE
x=p0(x) + p1(x) + · · · +pn−1(x)
k ek,i Eki∈ {1,...,dim(Ek)}
B={ek,i}k i E
σ∗:E∗→E∗B∗={e∗
k,i}e∗
k,i
σ∗ζk
σ∗σ∗(ϕ) = ϕ◦σ ϕ ∈E∗
B∗={e∗
k,i}B={ek,i}E∗e∗
k,i(el,j ) = 1 (k, i)=(l, j)
e∗
k,i(el,j ) = 0 σ∗(e∗
k,i) = ζke∗
k,i
E x ∈EB
x=Pλl,j el,j λl,j ∈C
σ∗(e∗
k,i)(x) = e∗
k,i(σ(x)) σ∗,
=e∗
k,i Xλl,j σ(el,j )
=e∗
k,i Xλl,j ζlel,j el,j σ ζl,
=λk,iζke∗
k,i,
=ζke∗
k,i(x)e∗
k,i .
dimC(E) = n σ Xn−1
Ek
⇒EkEdimC(E) =
PdimC(Ek) = n Ek6= 0 ζkX−ζk
µσσ k
Xn−1µσµσXn−1
σn= Id µσ=Xn−1
⇒Ek6= 0 Ek= 0 pkEk
Pn−1
i=0 ζ−ikσi= 0 P(X) = Pn−1
i=0 ζ−ikXi
n−1σ
σ Xn−1Ek6= 0 dim(Ek)>1
n E n
1