Classe de Première STI2D - cours Marc Bizet
- 1 -
Probabilité - schéma de Bernoulli - loi binomiale
1. Probabilités
Considérons une urne contenant des boules de 4 couleurs
différentes : bleues (B), ivoires (I), rouges (R) et noires (N).
Chaque boule porte les numéros
1
,
2
ou
3
.
On effectue le tirage d’une boule « à l’aveugle », ces boules
étant indiscernables au toucher.
Une expérience aléatoire possède un univers
constitué de
toutes les évènements possibles, selon le critère observé.
Si le critère porte sur la couleur :
{
}
B,I,R,N
=
Si le critère porte sur la valeur du numéro :
{
}
1 2 3
V , V , V
=
Deux évènements A et B sont disjoints ou incompatibles si et seulement si
∩ =
: B et I par
exemple.
L’évènement contraire d’un évènement A d’un univers
est l’évènement
A
constitué des éléments
de
n’appartenant pas à A :
N B I R
= ∪ ∪
par exemple.
La probabilité d’un évènement A d’un univers
est la somme de toutes les probabilité élémentaires
qui constituent A. La probabilité de
est
1
.
Pour tout évènement A,
(
)
0 A 1
p
≤ ≤
.
Un évènement élémentaire est un évènement possédant un seul élément : tirer une boule et
observer sa couleur par exemple. L’évènement B possède donc
4
évènements élémentaires.
L’équiprobabilité correspond au cas où tous les évènements élémentaires ont la même probabilité.
Dans ce cas, la probabilité d’un évènement A est :
( )
nombre d'éléments de A
A
nombre de cas possibles
p=
Par exemple :
( )
4
B
21
p= ou
( )
1
6 2
V
21 7
p
= =
Pour tous évènements disjoints A et B,
(
)
(
)
(
)
A B A B
p p p
∪ = +
Par exemple :
( ) ( ) ( )
4 9 13
B I B I
21 21 21
p p p∪ = + = + = ou
( ) ( ) ( )
1 3 1 3
6 8 14
V V V V
21 21 21
p p p = + = + =
Pour tout évènement A :
(
)
(
)
A 1 A
p p= −
Classe de Première STI2D - cours Marc Bizet
- 2 -
Pour tous évènements A et B :
(
)
(
)
(
)
(
)
A B A B A B
p p p p
∪ = +
Exemples :
La probabilité de tirer soit une boule couleur ivoire, ou portant le numéro 1 est :
(
)
(
)
(
)
(
)
1 1 1
I V I V I V
9 6 3 12 4
21 21 21 21 7
p p p p
∪ = + − ∩
= + − = =
La probabilité de tirer soit une boule qui ne soit pas noire, soit une boule portant le numéro 2 est :
(
)
(
)
(
)
(
)
2 2 2
N V N V N V
17 7 5 19
21 21 21 21
p p p p∪ = +
= + − =
Dans un arbre pondéré, la probabilité d’obtenir le résultat auquel conduit un chemin est égale au
produit des probabilités rencontrées le long de ce chemin.
Classe de Première STI2D - cours Marc Bizet
- 3 -
2. Schéma de Bernoulli
Définition
On appelle épreuve de Bernoulli une expérience aléatoire dont on définit uniquement deux issues
possibles. La première issue est un "succès" de probabili
p
et se note
S
, la seconde un chec"
de probabilité
1
p
et se note
S
.
Lors du déroulement d'un jeu de plateau, un joueur est amené à lancer un dé tétraédrique (
4
faces ).
S'il obtient
4
, son guerrier touche l'ennemi. Dans le cas contraire, il le manque.
Il s'agit d'une épreuve de Bernoulli dont le succès
S
est de toucher l'ennemi, avec
( )
1
4
p p S
= =
.
Lorsque l'on répète un certain nombre de fois la même épreuve de Bernoulli, on définit un schéma
de Bernoulli, que l'on illustre par un arbre.
Dans l'arbre qui suit, nous avons simulé les lancers successifs de
3
dés tétraédriques.
Nous étudierons deux issues :
(
)
, ,
1 2 3
S S S
, qui correspond à deux succès et un échec ;
(
)
, ,
1 2 3
S S S
, qui correspond à un échec, suivi d'un succès, ponctué d'un échec.
Classe de Première STI2D - cours Marc Bizet
- 4 -
Pour la répétition d'expériences identiques et indépendantes, la probabilité d'une liste de résultats
est le produit des probabilités de chaque résultat.
Ainsi :
( )
( ) ( )
( )
( )
, ,
1 2 3 1 2 3
1 1 3 3
1
4 4 4 64
p S S S p S p S p S p p p= × × = × × = × × =
( )
( ) ( )
, ,
1 2 3
3 1 3 9
1 1
4 4 4 64
p S S S p p p= × × = × × =
Exercice
Un représentant de commerce propose à la vente un produit. Une étude statistique a permis
d'établir que, chaque fois qu'il rencontre un client, la probabilité qu'il vende son produit est de
,
0 2
.
On considère les transactions indépendantes. Dans une matinée, il rencontre 3 clients. Représenter
la situation par un arbre pondéré, et déterminer la probabilité qu'il vende deux produits dans la
matinée.
Nous sommes en présence d'un schéma de Bernoulli, avec une répétition d'expériences
indépendantes, identiques, avec deux issue (vente :
V
, non-vente :
V
).
Classe de Première STI2D - cours Marc Bizet
- 5 -
La probabilité de l'évènement E : "il vend 2 produits dans une journée" est
(
)
, , , , , , , , ,
, ,
,
2
E 0 2 0 2 0 8 0 2 0 8 0 2 0 8 0 2 0 2
3 0 2 0 8
0 096
p= × × + × × + × ×
= × ×
=
3. Loi binomiale
Définition
Soit
X
la fonction qui, à chaque issue d'un schéma de Bernoulli à
n
épreuves, associe le nombre de
succès obtenus. On dit que
X
est la variable aléatoire associée à ce schéma de Bernoulli.
Cette variable peut prendre pour valeurs les entiers de
0
(aucun succès) à
n
(uniquement des
succès).
Définition
On appelle "
X k
=
" l'évènement "on obtient
k
succès" et
(
)
P X k
=
la probabilité de cet
évènement. On appelle loi de
X
la donnée de chacune des valeurs de
(
)
P X k
=
pour toutes les
valeurs de
k
de
1
à
n
. On dit que
X
suit une loi binomiale de paramètres
n
et
p
. Cette loi est
notée
(
)
;
n p
B
Dans l'exemple du représentant de commerce :
On définit une variable aléatoire
X
qui suit une loi binomiale de paramètres
3
n
=
(3 visites de
clients) et
,
0 2
p
=
(probabilité de vendre).
Avec la commande Casio :
BinomialCD
(
)
, .
3 0 2
(
)
. , . , . , .
0 512 0 384 0 096 0 008
Avec la commande Texas :
Menu DISTR - binompdf
(
)
, .
3 0 2
(
)
. ,. ,. ,.
512 384 096 008
Nous traduisons ce résultat par un tableau récapitulatif :
k
0
1
2
3
(
)
P X k
=
,
0 512
,
0 384
,
0 096
,
0 008
Le résultat
(
)
,
2 0 096
P X
= =
fait écho à l'exemple du sous-chapitre 2.
Grâce à ce tableau, il est aisé de déterminer la probabilité pour ce vendeur de vendre au moins un
article , qui est l'évènement contraire de ne pas en vendre un seul :
(
)
(
)
, ,
1 1 0 1 0 512 0 488
P X P X
= − = = − =
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !