f0f:IRf
f0f
f0(x0)
f(x)x x0
f(x0)f(x1)x1
x0
R
))
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
uul
l
l
l
l
l
l
l
l
l
l
l
l
l
uul
l
l
l
l
l
l
l
l
l
l
l
l
l
))
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
a < b f : [a, b]R
f[a, b] ]a, b[f(a) = f(b)
c]a, b[f0(c)=0
[a, b]f[a, b]f
[a, b]x0x1[a, b]f(x0)f(x)f(x1)
x[a, b]
x0x1]a, b[c=x0x1f
c]a, b[c f0(c)=0
x0x1[a, b]f(a) = f(b)
f(x0) = f(x1)f(x0)f(x)f(x1)f[a, b]
f[a, b]f0(c) = 0
c]a, b[
a < b f : [a, b]R
f[a, b]
]a, b[c]a, b[f(b)f(a) = f0(c)(ba)
θ=f(b)f(a)
bac]a, b[f0(c) = θ
g: [a, b]Rx7→ f(x)θ×(xa)θ×(xa)
[a, b]g
g(b) = f(b)f(b)f(a)
ba×ba=f(a) = g(a).
c]a, b[g0(c) = 0 g0(x) = f0(x)θ x ]a, b[
f0(c) = θ
IRf:IRf0(x)0xI
f0I
a b I a b f(a)f(b)a=b a < b
f a b c ]a, b[f(b)f(a) = f0(c)(ba)f0(c)0
ba > 0f(b)f(a)0
f(a) = f(b)f0(c)=0
f a b a b
a b (T)f
(C)a b c f0(c)
θ=f(b)f(a)
ba
T
C
b
a
f(a)
f(b)
a b |cos c| ≤ 1c
|sin bsin a|=|cos(c)(ba)|=|cos(c)|×|ba|≤|ba|.
|sin bsin a| ≤ |ba|a b b =x a = 0 |sin x| ≤ |x|
b
a b 1|ln bln a| ≤ |ba|
1x0
f x0
f(x) = f(x0) + f0(x0)(xx0)+(xx0)(xx0),
lim0= 0 n
n
f:IRIRn
f(n)nNf(1) =f0f(n)= (f(n1))0f(n1) f
Cnn f Cn f (n)
n
C
Cnexp(n)= exp n
cos(2n)= (1)ncos,cos(2n1) = (1)nsin,
sin(2n)= (1)nsin,sin(2n1) = (1)n+1 cos .
n(1/x)(n)= (1)nn!/xn+1 xRnN
f:IR
IRn f(n)(x0)x0I :IR
lim0= 0 xI
f(x) = f(x0) + f0(x0)(xx0) + f00 (x0)
2(xx0)2+··· +f(n)(x0)
n!(xx0)n+ (xx0)n(xx0).
f n x0
n x0
n= 1
n= 1 n= 2
f x0
ϕ(x) = f(x)f(x0)f0(x0)(xx0)f00 (x0)
2(xx0)2,
ϕ(x)/(xx0)20x0
 > 0α > 0|ϕ(x)| ≤ |xx0|2xI|xx0| ≤ α
α ϕ
ϕ0(x) = f0(x)f0(x0)f00 (x0)(xx0).
f0x0n= 1 f0
ϕ0(x)/(xx0) 0 x0α > 0|ϕ0(x)| ≤
|xx0|xI|xx0| ≤ α
ϕ x0x y x0x|ϕ(x)ϕ(x0)|=
|ϕ0(y)| × |xx0|y x0x|yx0|≤|xx0| |xx0| ≤ α
|yx0| ≤ α|ϕ0(y)| ≤ |yx0| ≤ |xx0|ϕ(x0)=0
|ϕ(x)|=|ϕ(x)ϕ(x0)| ≤ |xx0|×|xx0|=|xx0|2,
x|xx0| ≤ α
0 exp Cexp(n)(0) = 1 :RR
lim0= 0 xR
exp(x) = 1 + x+x2
2+x3
6+··· +xn
n!+xn(x).
0
n
n x0= 1 f:x7→ 1/x
n
0f
f
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !