(X, d)f:XX
nNfnf n
f
RE:= C0([0,1],R) [0,1] R
k·k
f:EE
x7−t7→ 1
21 + Z1
0
testx(s)ds
f x kxxnkxn
E x0:t7→ 1xn+1 =f(xn)nN
C0
b(R,R)R R R λ]0,1[
g∈ C0
b(R,R)
f∈ C0
b(R,R)
xR, f(x) = λf(x+ 1) + g(x).
f g
(E, k·k)K E F E
F(k, f)K×F d(k, f ) = d(K, F )
(k1, k2)K2d(k1, k2) = (K)
E=Rn(k, f)K×F d(k, f ) = d(K, F )
(E, d) (Kn)nN
E n Kn+1 Kn
nNKn
(un)nNE n NunKn
(uϕ(n))nN(un)nNnNuϕ(n)
Kn
nNKnE
O E nNKnnNknO
f g X f
X g1(] − ∞,0]) A > 0
xX, A ·f(x) + g(x)>0.
An={xX|n·f(x) + g(x)0}
(E, k·k)A B E
A+B:= {a+b|(a, b)A×B}.
A A +B
A B A +B
A B A +B
R×R
A:= {(a, b)R×R|a > 0ab = 1}B:= {(a, b)R×R|a= 0 b0}.
A, B A +B
nNRMn(R)n×n
k · kA(ai,j )1i,jnkAk= max1i,jn|ai,j | Mn(R)
On(R)
R2
A:= {(x, y)R2|x2y22xy 1}
B:= {(x, y)R2|x2+y2+exy 36}
C:= {(x, y)R2|2x2+ 3y2<1}
(E, d) (xn)n0E a E
K={xn|n0}∪{a}E
(E, d) (xn)n0E
a E a
1 / 2 100%