◦3
K
K=Rf: (x, y, z)∈R37→ (x+y, y +z, z +x)∈R3
K=Cf: (x, y)∈C27→ (xy, y)∈C2
K=Rf: (x, y)∈R27→ (2x+ 1, x −y)∈R2
K=Rf: (x, y)∈R27→ (|x|, y, 0) ∈R3
K=RC1C0R
C1→ C0
f7→ f0
K=R
C0([−1,1]) →R
f7→ Z1
−1
f(t)dt C0([−1,1]) R
[−1,1] R
f:R2→R3f(x, y)=(x−y, y −x, 0)
f:R3→R3f(x, y, z) = (x−y, y −z, z −x)
f:R3[X]→R3[X]f(P(X)) = P(X)−(X+ 1)P0(X)
f:R3→R2
f(1,0,0) = (1,0), f(0,1,0) = (1,1), f(0,0,1) = (0,1).
Im(f)
Im(f)Ker(f)
f:
R3[X]→R2
P7→ (P(0), P (1))
f
Ker(f)f
f f
Ker(f)⊕R1[X] = R3[X]
m fm:R3→R3
fm(x, y, z) = x+y+z, mx +y+ (m−1)z, x +my +z.
m fm
m fm
m fm
(e1, e2, e3)R3m
fm(e1)fm(e2)fm(e3)R3