Ci(M P (n)
i,j ) = −Cj(M)
Cj(M P (n)
i,j ) = Ci(M)
Ck(M P (n)
i,j ) = Ck(M)
P(n)
i,j =i(−1)π(i,j)=π(i,j)j(−1)
Li(P(m)
i,j M) = Lj(M)
Lj(P(m)
i,j M) = −Li(M)
Lk(P(m)
i,j M) = Lk(M)
1≤i6=j≤m k 6=i, j
P(m)
i,j =X(m)
i,j (1).X(m)
j,i (−1).X(m)
i,j (1)
M∈ Mn(K)σ∈Sn
(π−1
σM πσ)i,j =Mσ(i),σ(j)
1≤i, j ≤n
K6=F2n(K)(H) = HoP M =HoPn(K)
O(λ)∈ H
(π−1
σ(λ)πσ) = (σ.λ)
σ.λ = (λσ(1),· · · , λσ(n))P H
H P H ∩ P ={ } M =H.P
n(K)H.P M ⊂ n(K)(H)
M∈n(K)(H)λ∈(K∗)nM(λ)M−1∈ H
λ0∈(K∗)nM(λ) = (λ0)M1≤i, j ≤n
λ0
iMi,j =λjMi,j
M i, j1, j2
j16=j2Mi,j16= 0 Mi,j26= 0 λ∈(K∗)nλj16=λj2
M∈n(K)(H)M
:Km−→ [0,· · · , m]
x= (a1,· · · , am)Km(x)h∈[0,· · · , m]ai= 0
1≤i≤m−h h = 0 x am−h+1 6= 0
H∈m,n(K)H
(C1(H)) >· · · >(Cr(H)) >(Cr+1(H)) = · · · = 0
r≤n Cj(H)=0∈Kmj > n
Cj(H) 1 ≤j≤r H s(j) = m−(Cj(H)) + 1
Cj(H)s(j)H
H
Ls(j)(H) = Lj(n) 1 ≤j≤r
x∈Km
H