Arithmétique dans l`ensemble des entiers relatifs

nNn= 10q+r q NrJ0,9K
7|n7|q2r
7|11228 7 |15637
11 2123 + 3121
nN
(i) 6 |5n3+n, (ii) 7 |32n+1 + 2n+2,(iii) 11 |38n×54+ 56n×73,
(iv) 5 |22n+1 + 32n+1,(v) 9 |4n13n, (vi) 152|16n115n.
n>2 10 |22n6
nN2
52n1 2n+2
(a, b)Z2nN
ab[n]anbn[n2].
(x, y)N27|x7|y7|x2+y2
(x, y)Z2
(i)xy = 3x+ 2y, (ii)1
x+1
y=1
5,(iii)x2y24x2y= 5.
nN40nn!|(5n)!
x2+y2= 3z2(x, y, z)Z3
x2+y2+z2=x2y2(x, y, z)Z3
(x, y, z)x, y z
4542
nNnQnN
nN
n n
nN\ {0,1}n=
N
Y
k=1
pαk
k
d(n)n
n d(n)
Y
d|n
dX
d|n
d.
nNd(n)n
1
n
n
X
k=1
d(k).
(3123 5) 25
(a, b)Q2
a+bZab Z(a, b)Z2.
(a0, a1, . . . , an1)ZnxQ
xn+an1xn1+··· +a1x+a0= 0,
xZ
(a, b, n)(N)3anbn= (ab)n
(a, b)(N)2(a+b)(ab) = ab
(a, b)(N)2(a2+ab +b2)ab =a2b2
nN
(i) (n2+n)(2n+ 1),(ii) (15n2+ 8n+ 6) (30n2+ 21n+ 13).
(x, y)Z2
(i) 95x+ 25y= 45,(ii) 20x53y= 3.
(x, y)N2
(i)xy+xy=x+y, (ii)xy+ 11(xy) = 203.
(N)2
(i)xy= 18
xy= 540 (ii)xy= 10
x+y= 100
(a, b, c)(N)3
ab= 42, a c= 3 a+b+c= 29.
(d, m)(N)2
(x, y)(N)2
xy=d x y=m.
(un)u0= 14 un+1 = 5un6
nNdn=un+1 un
(m, n)(N)2
2m1 2n1
pgcd(2m1,2n1)
(a, b)(N)2
nN, ab =n2⇔ ∃(m, n)N2, a =m2b=n2.
nN, n + 1 |2n
n.
nN
ak=k·n!+1 kJ1, n + 1K
nNFn= 22n+ 1 (m, n)N2
m6=n FmFn= 1
(ϕn)nN
ϕ0= 0, ϕ1= 1 nN, ϕn+2 =ϕn+1 +ϕn.
ϕn+1ϕn1ϕ2
n= (1)nnN
ϕnϕn+1 = 1 nN
ϕn+m=ϕmϕn+1 +ϕm1ϕn(m, n)N×N
ϕmϕn(m, n)N2
nN\ {0,1}, n
X
k=1
1
k!/N.
(a, b)N×Npgcd(a, b)=1
f: div(a)×div(b)div(ab),(k, `)7→ k`
div(n)nN
nN
n n!+2
a p ap1
a= 2 p
nN2n+ 1 n
2
p>5p21 24
nN\ {0,1}
n
kJ1, n 1K, n |n
k.
pN
nZ, npn[p].
nNpN
p n!
30!
3 4
pNp>5
pp|(p1)!.
6 5n3+n=(n1)n(n+ 1) 6
7 32n+1 + 2n+2 = 9n·3+2n·4=2n·7 = 0
11 38n·54+ 56n·73= 5n·9+5n·2 = 0
5 22n+1 + 3n+1 = 4n·2+9n·3=4n·5 = 0
9 4n+1 13n= 3(4n1) = 0 3 |4n1
15216n+1 115n= 15(16n1) = 0
x2+y27
3 (x, y, z) = (0,0,0)
4x, y z
x, y Z2
4 (x, y, z) = (0,0,0)
n= 3α·5βα, β > 1
(3α/2·5β/2)(α+1)(β+1) = 4542 α= 6 β= 3 n= 36·53
d(n)=(α1+ 1) ···(αN)
Y
d|n
d=nd(n)X
d|n
d=
N
Y
i=1
pαi+1
i1
pi1.
ln(n)
a, n 6= 0 a=p/q b =m/n p, m Z
q, n Npq= 1 mn= 1 a+b=pn+mq
qn Z
q|n n |q n =q
ab = (pm)/q2Zqpm = 1 q=n= 1
pgcd(a, b)=1
p p |a2+ab +b2ab p |ab p |a+b
p|a p |b p |a p |b
(x, y) = (95k, 36 + 19k) (x, y) =
(24 + 53k, 9 + 20k)
(21,2,6) (3,14,12) (6,14,9)
3|a3|c b = 29 acpgcd(b, 3) = 1
b|42 = 3 ×14 b|14 b∈ {1,2,7,14}29 b=a+c
3b2 14
m>n2m1 2n1
2m1=2r(2nq 1) + 2r1=2r(2n1)(2n(q1) +··· + 1) + 2r1
pgcd(2m1,2n1) = 2pgcd(m,n)1
p aka`p
p6n
ϕmϕn=ϕmn
p n! + 1 p6n
p|(n! + 1) n! = 1
n k =p
p n!Pkbn/pkc
p1, . . . , pk
m= 4p1. . . pk1m>2m= 3[4] m
p p = 3[4] p|m p |p1···pkp|1
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !