6 5n3+n=−(n−1)n(n+ 1) 6
7 32n+1 + 2n+2 = 9n·3+2n·4=2n·7 = 0
11 38n·54+ 56n·73= 5n·9+5n·2 = 0
5 22n+1 + 3n+1 = 4n·2+9n·3=4n·5 = 0
9 4n+1 −1−3n= 3(4n−1) = 0 3 |4n−1
15216n+1 −1−15n= 15(16n−1) = 0
x2+y27
3 (x, y, z) = (0,0,0)
4x, y z
x, y ∈Z∗2
4 (x, y, z) = (0,0,0)
n= 3α·5βα, β > 1
(3α/2·5β/2)(α+1)(β+1) = 4542 α= 6 β= 3 n= 36·53
d(n)=(α1+ 1) ···(αN)
Y
d|n
d=√nd(n)X
d|n
d=
N
Y
i=1
pαi+1
i−1
pi−1.
ln(n)
a, n 6= 0 a=p/q b =m/n p, m ∈Z
q, n ∈N∗p∧q= 1 m∧n= 1 a+b=pn+mq
qn ∈Z
q|n n |q n =q
ab = (pm)/q2∈Zq∧pm = 1 q=n= 1
pgcd(a, b)=1
p p |a2+ab +b2ab p |a−b p |a+b
p|a p |b p |a p |b
(x, y) = (−9−5k, 36 + 19k) (x, y) =
(24 + 53k, 9 + 20k)
(21,2,6) (3,14,12) (6,14,9)
3|a3|c b = 29 −a−cpgcd(b, 3) = 1
b|42 = 3 ×14 b|14 b∈ {1,2,7,14}29 −b=a+c
3b2 14
m>n2m−1 2n−1
2m−1=2r(2nq −1) + 2r−1=2r(2n−1)(2n(q−1) +··· + 1) + 2r−1
pgcd(2m−1,2n−1) = 2pgcd(m,n)−1
p aka`p
p6n
ϕm∧ϕn=ϕm∧n
p n! + 1 p6n
p|(n! + 1) −n! = 1
n k =p
p n!Pkbn/pkc
p1, . . . , pk
m= 4p1. . . pk−1m>2m= 3[4] m
p p = 3[4] p|m p |p1···pkp|1