DST21du19042017en1s1
1/ Résoudre [sin(Zx-pi/6) = -1 ; inconnue x]
Le seul nombre compris entre 0 et 2pi dont le sinus est -1 est 3 fois pi/2. L'ensemble des
solutions de l'équation est donc
{x dans IR | il existe un nombre entier relatif n tel que Zx-pi/6 = 3pi/2+2pi fois n}
La reformulation élégante est affaire de collège, mais surtout risquée pour certains...
2/ Donner une équation de la droite passant par (5,6) et ayant comme vecteur normal
(3Z,Z)
Je vous le corrige de deux façons différentes:
Façon1: pour tous nombres (x,y), et tout point M, si M=(x,y) alors M est sur la droite
demandé ssi le vecteur joignant le point (5,6) au point M est orthogonal au vecteur (3Z,Z).
Une équation de la droite est donc [3Z(x-5) + Z(y-6)=0]
Certains ont développé, c'est bien à condition d'éviter les erreurs de calcul (nombreuses
dans les copies corrigées)
Façon2 (moins intelligente, utilisant UNE connaissance "bête" de plus, mais évite le produit
scalaire explicite): pour tout nombre c, le vecteur (3Z,Z) est normal à la droite d'équation
[3Zx+Zy+c=0]. Il suffit donc que c=-(3Z fois 5 +Z fois 6) pour que cette droite passe en plus
par (5,6)
3/ Il vous est demandé de proposer vous-même des valeurs de a,b,c,d,u,v de manière à
obtenir que toutes les conditions qui suivent soient remplies :
a/ le tableau de variation de
f:x
ax3+bx²+cx+d
x
-Z
2Z
f
Strictement
décroissante
u
Strictement
croissante
v
Strictement
décroissante
Comme j'avais enlevé une condition, l'exercice donnait une grande liberté et devenait du
coup "officiellement trop facile". Et bé, la liberté ne vous plait vraiment mais vraiment pas
du tout. Je constate aussi que certains n'ont pas écouté et ont vécu la condtion attendue
comme une hypothèse et non pas comme un WANTED!! Résultat, ils n'ont pas abouti... et
pour cause. La condition est bien trop tolérante pour impliquer déductivement d'uniques
choix de nombres.
4/ Soit le programme P suivant :
Lire a,b ;
Pour i allant de a jusqu’à b faire
a prend la valeur de i+a ;
Afficher (a-b)
Qu’obtient-on comme nombre écrit à la fin quand on propose (a,b):=(Z,Z+2) au départ du
programme?
Franchement, le coup de "je le programme sur ma calculatrice et j'obtiens tant" n'est pas une
preuve!!! (J'ai rémunéré 1point ce profil de réponse).
La machine va faire trois tours, suivi d'un affichage, ce n'était pas la mer à boire que de les
décrire, si?
Tour1: <<dans i: Z, dans a: Z, dans b:Z+2>>
Tour2: <<dans i: Z+1, dans a: Z+Z, dans b:Z+2>>
Tour3: <<dans i: Z+2, dans a: Z+(Z+1), dans b:Z+2>>
Affichage : Z+Z+1 - (Z+2)
5/ Soit u une suite géométrique telle que u(4)+u(6) = Z²+1 et u(5)=Z avec une raison
positive q. Trouver q.
Après avoir justifié que q n'est pas nul CLG, comme u(6) = q² fois u(4), donc u(4) fois (1+q²)
= (Z/q) fois (1+q²)= 1+Z² donc Z fois (1+q²) = q fois (1+Z²), la suite est pour vous, mais
vous pouvez remarquer que Z est solutions de [Z fois (1+x²) = x fois (1+Z²);inconnue x] ce
qui permet de vérifier les calculs quand on a terminé deltarobot.
6/ Soit f telle que pour tout nombre x>2 :
f(x) = (Zx+1)/(Zx-Z)
6.1/ Etudier les variations de f
On peut écrire le code de f, en remarquant que pour tout x>2: f(x) = 1 + (Z+1)/(Zx-Z), ce
qui permet de dériver vite et sans ETD: f':x |--> -(Z+1) / (Zx-Z)², qui est strictement négative
sur ]2, +infini[, donc f strictement croissante sur ]2, +infini[
PAS COMPRIS POURQUOI CERTAINS SE TIRENT UNE BALLE DANS LE PIED
EN DEVELOPPANT LE DENOMINATEUR PUIS EN RATANT PAR ERREURS DE
CLG-CALCUL L ETUDE DE SON SIGNE
6.2/ Trouver où la tangente à Cf en
(Z-4,f(Z-4)) coupe la droite d’équation [y=x]
Laissé en exercice
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !