Licence de Physique et Applications Electromagnétisme II
TD2
Polarisation : suite
1. Polarisabilité électronique
Lorsqu’un atome est placé dans un champ électrique local uniforme
l
E
, l’effet du champ est de
déplacer le noyau et le barycentre du nuage électronique d’une distance d petite par rapport au
rayon de l’atome a. A l’équilibre, l’atome acquiert un moment dipolaire induit
l
Ep
0

,
est la polarisabilité électronique.
On supposera le noyau ponctuel, de charge Ze.
Le but de l’exercice est de déterminer
dans différents cas.
1. On suppose ici que la répartition volumique des électrons est uniforme dans une sphère de
rayon a.
a) Soit
'E
le champ créé au niveau du proton par le nuage électronique. Que vaut
'E
par rapport à
l
E
?
b) Déterminer
'E
, grâce à l’utilisation judicieuse du théorème de Gauss.
c) En déduire que
3
4a
2. On suppose ici que la répartition volumique des électrons est telle que la densité volumique de
charges s’écrive
ar
Aer/2
)(
.
a) Déterminer A. On donne
0
3
/22 4
a
deer ar
b) Appliquer le théorème de Gauss pour calculer le champ
'E
c) En déduire que
3
3a
2. Dispersion normale dans un milieu dilué
On considère un gaz d’hydrogène atomique, de densi(= nombre d’atomes par unité de volume)
N, de température T = 300K, soumis à un champ électrique
ti
eEE
0
. Ce gaz absorbe dans
l’ultraviolet, et on s’intéresse au domaine visible.
On cherche à terminer la dépendance de l’indice optique n en fonction de la pulsation du champ
électrique
, ou en fonction de sa longueur d’onde
. Généralement, l’indice est une fonction
décroissante de la longueur d’onde : on parle alors de dispersion normale.
On rappelle que dans les milieux dilués comme les gaz, les propriétés électromagnétiques peuvent
être obtenues à l’aide du modèle classique de l’électron élastiquement lié. Loin des fréquences
d’absorption, les phénomènes d’amortissement sont négligeables, et le modèle s’écrit :
Eermrm
2
0
Licence de Physique et Applications Electromagnétisme II
où le champ local
l
E
a été assimilé avec le champ appliqué
E
, puisque le milieu est dilué.
1. Chercher une solution de l’équation du mouvement en régime for sous la forme
. En déduire l'expression du vecteur polarisation
P
.
2. En déduire la susceptibilité diélectrique et la constante diélectrique relative
r. Donner la
relation exprimant le carré de l’indice n en fonction de
,
0 et de la pulsation plasma
p dont
on rappellera la définition.
3. Ecrire la relation de dispersion de l’indice n(
) sous la forme
2
1)(
b
an
4. Expérimentalement, on trouve a = 1.36 10-4 et b = 1.06 10-18 m2. En déduire les valeurs de la
longueur d’onde d’absorption, de la pulsation plasma, de la densité du gaz et de sa pression.
3. Dispersion normale et anormale dans un milieu dense
On considère un milieu dense (liquide ou solide) infini comprenant N électrons polarisables par uni
de volume. Ce milieu est soumis à un champ électrique extérieur
ti
ext eEE
0
.
Les propriétés électromagnétiques du milieu peuvent être obtenues à l’aide du modèle classique de
l’électron élastiquement lié en présence de dissipation (ce qui inclut la prise en compte de
l’absorption) :
l
Eermrmrm
2
0
où le champ local
l
E
ne peut plus être assimilé avec le champ appliqué, car le milieu est dense.
Dans certains domaines de longueur d’onde, l’indice optique peut être une fonction croissante de la
longueur d’onde : on parle alors de dispersion anormale.
1. Donner l’expression du champ local
l
E
en fonction du champ extérieur
ext
E
et de la
polarisation
P
.
2. On posera en régime forcé
ti
ePP
0
. Calculer
0
P
en fonction de
0
E
. On introduira la
fréquence effective
1 telle que :
3
2
2
0
2
1p
3. En déduire la susceptibilité
en fonction de la pulsation
. On notera
0 la susceptibilité
statique.
4. On pose
rrr i"'
. Exprimer
r
'
et
r
"
en fonction des rapports

et
/
1.
5. Représenter les fonctions
1'
r
et
r
"
en fonction de
.
6. Discuter la dépendance spatio-temporelle du champ électrique en fonction des valeurs prises
par l’indice complexe n.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !