Dossier – Loi Binomiale I – Épreuve de Bernoulli Définition : Une

TaleAC1 Dossier – Loi Binomiale
I – Épreuve de Bernoulli
Définition :
Une épreuve de Bernoulli est une expérience aléatoire qui ne présente que 2 issues : le succès ou l'échec.
Le succès noté S a une probabilité p
L'échec noté E ou S a une probabilité q = 1 – p.
Exemples :
• L'expérience « Obtenir pile lors du lancer d'une pièce équilibré » est une épreuve de Bernoulli
Le succès « Obtenir pile » a pour probabilité
1
2
L'échec « Obtenir face » a pour probabilité
11
2=1
2
• L'expérience « Obtenir 6 lors du lancer d'un dé non truqué » est une épreuve de Bernoulli
Le succès « Obtenir 6 » a pour probabilité
1
6
L'échec « Obtenir 1, 2, 3, 4 ou 5 » a pour probabilité
5
6
• L'expérience « Choisir une ampoule dans un lot qui contient 1% d'ampoule défectueuses » est une épreuve
de Bernoulli
Le succès « Obtenir une ampoule défectueuse » a pour probabilité 0,01
L'échec « Obtenir une ampoule en état de marche » a pour probabilité 1 – 0,01 = 0,99
II – Loi Binomiale
On considère une épreuve de Bernoulli dans laquelle la probabilité d’un succès est p.
On répète n fois cette épreuve de Bernoulli de façon identique et indépendante.
Définition :
Soit X la fonction qui, à chaque issue du schéma de Bernoulli, associe le nombre de succès obtenus. On dit
que X est la variable aléatoire associée à ce schéma de Bernoulli.
X prend toutes les valeurs entières entre 0 et n
On dit que X suit une loi binomiale de paramètres n et p, noté B(n; p)
Exemples :
• Soit X la fonction qui compte le nombre de « pile » obtenus lors de 15 lancers d'une pièce équilibré.
X peut prendre les valeurs 0, 1, 2, …, 15 (on peut obtenir 0, 1, 2, …, 15 fois pile)
X suit une loi binomiale de paramètres 15 et
1
2
. On note X ~ B(15;
1
2
)
• Soit X la fonction qui compte le nombre de 6 obtenus lors 8 lancers successifs d'un dé non truqué.
X peut prendre toutes les valeurs entières entre 0 et 8
X suit une loi binomiale de paramètres 8 et
1
6
. On note X~ B(8;
1
6
)
• Soit X la fonction qui compte le nombre d'ampoule défectueuses sur les 20 ampoules tirées.
X peut prendre les valeurs entières entre 0 et 20
X suit une loi binomiale de paramètres 20 et 0,01. On note X~ B(20; 0,01)
Cours
TaleAC1 Dossier – Loi Binomiale
Propriété :
Il est possible de calculer la probabilité d'obtenir k succès parmi les n épreuves de Bernoulli en utilisant la
formule :
P (X = k) =
n
k
pk1– pn–k
n
k
est le nombre de façon d'ordonner k succès parmi n tentatives.
Propriétés :
La moyenne ou espérance d’une variable aléatoire qui suit une loi binomiale est
EX=n×p
.
Lécart type de X est
X=
n×p×1– p
La variance de X est
VX=n×p×1– p
Interprétation :
L’espérance est la valeur que l’on peut espérer obtenir en moyenne lorsque l’on reproduit un grand nombre
de fois l’expérience.
Exemples :
Lors de 15 lancers successifs d'une pièce équilibré, la probabilité d'obtenir 4 fois pile est donnée par :
15
4
est le nombre de façon d'obtenir 4 « Pile » sur 15 lancers (on peut, par exemple, obtenir 4 fois
« Pile » lors des 4 premiers lancers puis que des « Face », mais on peut aussi obtenir Pile Face Pile Face Pile
Face Pile puis que des « Face »)
0,54
est la probabilité d'obtenir 4 « Pile »
0,511
est la probabilité d'obtenir 11 « Face »
On obtient en moyenne
15×0,5=7,5
« Pile » sur les 15 lancers.
• La probabilité d'obtenir 8 ampoules défectueuses parmi les 20 ampoules tirées est donnée par :
PX=8=
20
8
×0,018×0,9912
20
8
est le nombre de façon de tirer 8 ampoules défectueuses parmi 20 tirages
0,018
est la probabilité d'obtenir 8 ampoules défectueuses
0,9912
est la probabilité d'obtenir 12 ampoules en état de marche
On obtient en moyenne
20×0,01=0,2
ampoule défectueuse sur les 20 tirées.
III – Méthodes de calcul
Calcul de la loi binomiale avec la calculatrice :
Si X suit une loi binomiale de paramètres n et p, on peut calculer P(X=k) à l'aide de sa calculatrice
Texas Instrument
Accéder au menu DISTRIB : [2nde] [var].
Sélectionner 0 : binomFdp et entrer n, k, p
Casio Graph 35+ USB
(ces opérations ne sont pas possibles avec les casio graph 35+ et en deçà)
Dans le mode RUN, appuyer sur la touche [OPTN]
[F5] (STAT), puis [F3] (DIST), puis [F5] (BINM)
Sélectionner [F1] (Bpd) et entrer k, n, p
TaleAC1 Dossier – Loi Binomiale
Exemples :
• Pour calculer
, on tape :
TI : binomFdp ( 15 , 4 , 0.5 )
Casio : Bpd( 4 , 15 , 0.5 )
Et on obtient 0,041656
• Pour calculer
PX=8=
20
8
×0,018×0,9912
, on tape :
TI : binomFdp ( 20 , 8 , 0.01 )
Casio : Bpd( 8 , 20 , 0.01 )
Et on obtient
1,12.10– 11
Calcul de la loi binomiale avec un tableur (type Excel)
Si X suit une loi binomiale de paramètres n et p, la fonction LOI.BINOMIALE(k; n; p; 0) donne la valeur de
P(X=k).
Pour calculer
PX=4=
15
4
×0,54×0,511
, on tape « =LOI.BINOMIALE(4; 15; 0,5; 0) » dans une cellule
du tableur.
Pour calculer
PX=8=
20
8
×0,018×0,9912
, on tape « =LOI.BINOMIALE(8; 20; 0,01; 0) » dans une
cellule du tableur.
1. Étude d'une situation problème
Résoudre le problème donné en annexe et répondre aux questions.
2. Invention
Inventer et décrire une situation faisant intervenir la loi binomiale. Rédiger un exercice à partir de
cette situation.
3. Recherche documentaire
Présenter en quelques lignes Blaise Pascal.
Qu'est-ce que le triangle de Pascal? Comment est-il construit? Que représentent les nombres qui y
figurent?
Répondre aux questions suivantes à l'aide de recherches menées sur Internet ou dans les livres.
Faire figurer dans l'exposé uniquement les notions comprises ou le cas échéant, les expliquer.
On n'oubliera pas de citer ses sources.
Travail à faire
TaleAC1 Dossier – Loi Binomiale
Annexe
Les résultats seront données à
10– 3
près. On précisera la méthode de calcul utilisée et on donnera la
commande exécutée.
Un examen comporte un QCM. Il y a 10 questions indépendantes et pour chaque question, il y a quatre
propositions dont une seule est juste. Un candidat, n'ayant aucune connaissance sur le thème de ce QCM,
décide de répondre au hasard. Ses réponses aux dix questions sont indépendantes les unes des autres.
1. Quelle est la probabilité de répondre juste à une question du QCM?
2. Quelle est l'épreuve de Bernoulli considérée ici? Décrire le succès et donner sa probabilité.
3. On note X le nombre de réponses justes obtenues par le candidat au QCM.
a. Quelles sont les valeurs que peut prendre X?
b. Expliquer pourquoi X suit une loi binomiale et préciser ses paramètres.
4. Calcul de probabilités
a. Quelle est la probabilité que le candidat ait 3 réponses justes?
b. Quelle est la probabilité que le candidat ait au plus 3 réponses justes?
5. En moyenne, combien de réponses justes le candidat peut-il espérer obtenir?
TaleAC1 Dossier – Loi Binomiale
Annexe
Les résultats seront données à
10– 3
près. On précisera la méthode de calcul utilisée et on donnera la
commande exécutée.
Un club de sport comporte 75 adhérents. Il met une salle de musculation à leur disposition. Un sondage a
permis au club d'estimer que, s'il n'y a pas de réservation préalable, la probabilité qu'un adhérent utilise la
salle le vendredi soir est 0,4. On considère que chacun des adhérents décide de se rendre ou non à la salle de
musculation indépendamment des autres adhérents.
1. Quelle est la probabilité qu'un adhérent se rende à la salle le vendredi soir?
2. Quelle est l'épreuve de Bernoulli considérée ici? Décrire le succès et donner sa probabilité.
3. On note X le nombre d'adhérents de présentant à la salle le vendredi soir.
a. Quelles sont les valeurs que peut prendre X?
b. Expliquer pourquoi X suit une loi binomiale et préciser ses paramètres.
4. Calcul de probabilités
a. Quelle est la probabilité qu'il y ait 20 adhérents à la salle de musculation vendredi soir?
b. Quelle est la probabilité qu'il y ait moins de 5 adhérents à la salle de musculation vendredi soir?
5. En moyenne, combien d'adhérents y a-t-il à la salle de musculation le vendredi soir?
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !