(G, ·) 1 1G
ES(E)E.
G E
G×EE
(g, x)7→ g·x
xE, 1·x=x
(g, g, x)G2×E, g ·(g·x) = (gg)·x
G E.
G×EE
(g, x)7→ x·g
xE, x ·1 = x
(g, g, x)G2×E, (x·g)·g=x·(gg)
gG,
φ(g) : EE
x7→ g·x
E E, φ (g) S (E).1·x=x
xE, φ (1) = IdEg·(g1·x) = (gg1)·x= 1 ·x=x g1·(g·x) = x
φ(g)φ(g1) = φ(g1)φ(g) = IdE, φ (g)
φ(g1).
g·(g·x) = (gg)·x, g, g, x, φ (gg) = φ(g)φ(g),
φ(G, ·) (S(E),).
φ G E.
φ G E
g·x=φ(g) (x)
G
(g, h)G×G7→ g·h=gh
G
(g, h)G×G7→ g·h=ghg1
(G, ·) (S(G),)
Ad (g) : GG
h7→ ghg1
Ad Int (G)G.
Int (G)G/Z (G), Z (G)
G.
Ad : G S (G)gG
Ad (g) = IdG, g G ghg1=h h G,
gh =hg h G. Ad Z(G)G.
Im (Ad) = Int (G), G/Z (G) = G/ ker (Ad) Im (Ad) = Int (G).
G H
(g, h)G×H7→ g·h=ghg1H
S(E)E
(σ, x)∈ S (E)×E7→ σ·x=σ(x)E
G E. x E,
E
G·x={g·x|gG}
x G.
xy g G y =g·x
E x = 1 ·x y =g·x
x=g1·y y =g·x, z =h·y z = (hg)·x
xE x.
E.
S(E)E x E,
S(E)·x={σ(x)|σ S (E)}=E
yE y =τ(x), τ τ = (x, y)y̸=x, τ =Id y =x
G
hG, G ·h=ghg1|gG
G G ·h={h}hG.
H G, G
(h, g)H×G7→ h·g=gh1
1·g=g1 = g h1·(h2·g) = gh1
2h1
1=g(h1h2)1= (h1h2)·g g G
g H
H·g={h·g|hH}=gh1|hH
={gk |kH}=gH
G/H H.
G
(h, g)H×G7→ h·g=hg
H
H·g={hg |hH}=Hg
E σ S (E)
E H =σE
(σr, x)H×E7→ σr·x=σr(x)
xE
H·x={γ·x|γH}={σr(x)|rZ}
H·x σ. Orbσ(x)
σ S (E)
σ E σ
σ S (E)\{IdE}
σ= (x1, x2,· · · , xr)σ2
r= 2p σ p 1. p = 1, σ2=IdE
p2,
Orbσ2(x1) = {x1, x3,· · · , x2p1}Orbσ2(x2) = {x2, x4,· · · , x2p}
σ2
G E
(x, y)E2,gG|y=g·x
(x, y)E2,!gG|y=g·x
G E
φ:gG7→ (φ(g) : x7→ g·x) S (E)
(gGxE, g ·x=x)(g= 1)
GS(E).
G G
S(G).
gG, g ·h=gh =h h G
g= 1, φ
n1,On(R)Rn
(A, x)∈ On(R)×Rn, A ·x=A(x)
0.
xRn,
On(R)·x={A(x)|A∈ On(R)}
y∈ On(R)·x, A ∈ On(R)y=A(x)y=A(x)=x,
On(R)·xS(0,x).
yS(0,x)x̸= 0, y ̸= 0
B= (ei)1inB= (e
i)1inRne1=1
xx e
1=1
yy.
B By=ye
1=xA(e1) = A(x),
y∈ On(R)·x. On(R)·x=S(0,x)x̸= 0.
x= 0,On(R)·x={0}=S(0,x).
n, m K
G=GLn(K)×GLm(K)E=Mn,m (K)n
m
(P, Q)G, AE, (P, Q)·A=P AQ1
Or={AE|rg (A) = r}
r0 min (n, m).
A∈ Mn(K)r
Ar=Ir0
0 0 .
r= 0, A = 0 = A0. r 1, u L (Kn)
AKn, H ker (u)Kn,B1= (ei)1ir
HB2ker (u), u (B1) = (u(e1))1irKn
r
k=1
λku(ek) = 0,
r
k=1
λkekHker (u) = {0}λk
B={u(e1),· · · , u (er), fr+1,· · · , fn}KnuB1∪ B2
B
Or={AE|rg (A) = r}
=AE| (P, Q)G|A=P IrQ1=G·Ir
E=
min(n,m)
r=0
Or=
min(n,m)
r=0
G·Ir
G E. x X,
G
Gx={gG|g·x=x}
x G.
GxG
E E
G=S(E)σ·x=σ(x), x E
S(E\ {x}). σ Gx, σσ E \ {x},
GxS(E\ {x}).
(G, ·)E. x E
φx:G/GxG·x
g=gGx7→ g·x
G
card (G·x) = [G:Gx] = card (G)
card (Gx)
card (G·x) card (G)
g, h G x E, g ·x=h·x
(h1g)·x=x, h1gGxg=h G/Gx,
φx
G/GxG·x. G
card (G·x) = card (G/Gx) = card (G)
card (Gx)
1 / 11 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !