A∈ Mn(K)r
Ar=Ir0
0 0 .
r= 0, A = 0 = A0. r ≥1, u ∈ L (Kn)
AKn, H ker (u)Kn,B1= (ei)1≤i≤r
HB2ker (u), u (B1) = (u(e1))1≤i≤rKn
r
k=1
λku(ek) = 0,
r
k=1
λkek∈H∩ker (u) = {0}λk
B={u(e1),· · · , u (er), fr+1,· · · , fn}KnuB1∪ B2
B
Or={A∈E|rg (A) = r}
=A∈E| ∃ (P, Q)∈G|A=P IrQ−1=G·Ir
E=
min(n,m)
r=0
Or=
min(n,m)
r=0
G·Ir
G E. x ∈X,
G
Gx={g∈G|g·x=x}
x G.
GxG
E E
G=S(E)σ·x=σ(x), x ∈E
S(E\ {x}). σ ∈Gx, σ′σ E \ {x},
GxS(E\ {x}).
(G, ·)E. x ∈E
φx:G/Gx→G·x
g=gGx7→ g·x
G
card (G·x) = [G:Gx] = card (G)
card (Gx)
card (G·x) card (G)
g, h G x ∈E, g ·x=h·x
(h−1g)·x=x, h−1g∈Gxg=h G/Gx,
φx
G/GxG·x. G
card (G·x) = card (G/Gx) = card (G)
card (Gx)