Préconditionnement multi-domaines / multi-méthodes
pour les problèmes de grande taille en électromagnétisme
Jennifer Bourguignon-Mirebeau1,2,∗(3ème année de thèse)
François Alouges3et David Levadoux2(directeurs de thèse)
1 Sujet de la recherche
Notre objectif est de calculer le champ électromagnétique diffracté par un objet de grande taille (tel qu’un
avion d’arme complet), dans un contexte hautes fréquences (de l’ordre du GigaHertz), en régime harmonique. Pour ce
faire, nous devons résoudre les équations de Maxwell harmoniques en temps. De tels calculs permettent ensuite d’avoir
accès à la surface équivalente radar (SER) d’un avion, c’est-à-dire le graphe représentant l’intensité du champ diffracté
par l’objet dans toutes les directions. La modélisation et le calcul de ces champs se font grâce au code industriel
Elsem3D développé à l’ONERA.
Afin de gagner une dimension en espace, on choisit de résoudre le problème par une méthode d’équations
intégrales. Le principe d’une équation intégrale consiste à rechercher le champ électrique Een le paramétrant par
une source pvia un potentiel V,E=Vp, et de transformer le problème initial sur Eposé dans un volume (le
problème de Maxwell avec conditions aux limites sur la frontière de l’objet diffractant), en un problème sur la source
p, posé sur la surface de l’objet . D’un problème en trois dimensions posé dans un domaine infini (l’extérieur de l’objet
diffractant), on s’est ainsi ramené à un problème en deux dimensions, posé sur la surface bornée de l’objet.
L’un des problèmes rencontrés vient du fait que le calcul hautes fréquences impose une discrétisation très
fine du domaine de calcul (la surface de l’objet). En effet, plus la fréquence est élevée, plus la longueur d’onde est
petite, or la finesse du maillage doit être de l’ordre de la longueur d’onde. Ceci implique que les systèmes linéaires à
inverser sont de grande taille, nous obligeant ainsi à utiliser des méthodes itératives et non directes de résolution. Les
méthodes itératives imposent, pour être résolues en un petit nombre d’itérations, que les systèmes linéaires à résoudre
soient bien conditionnés.
Nous souhaitons en outre utiliser des méthodes de décomposition de domaine, car celles-ci réduisent la taille
des systèmes linéaires en jeu et rendent possible une parallélisation du problème. De plus elles permettent également
de traiter séparément le domaine extérieur et les cavités internes de grande taille présentes dans un avion (entrées
d’air moteur, par exemple), qui engendrent des problèmes de résonance. Notre démarche consiste donc à construire
une méthode de décomposition de domaine basée sur une équation intégrale bien conditionnée.
2 Résumé des travaux et principaux résultats obtenus
Notre travail se situe dans la continuité de la thèse de Sophie Borel, qui a construit une équation intégrale
appelée GCSIE (Generalized Combined Source Integral Equation), dédiée au problème du conducteur électrique par-
fait (PEC). David Levadoux a montré que la GCSIE est un cas particulier d’une classe d’équations intégrales en
source intrinsèquement bien conditionnées, et il a décrit le formalisme général permettant de créer de telles équa-
tions. Ce formalisme a été appliqué par Sébastien Pernet pour obtenir une équation dédiée aux problèmes impédants.
Nous construisons une méthode de décomposition de domaine basée sur un potentiel implicitement déterminé par la
résolution d’un problème impédant, impliquant l’utilisation de la précédente équation intégrale.
Nous avons implémenté l’équation intégrale permettant de résoudre les problèmes impédants. Nous disposons
donc maintenant de trois équations intégrales de type GCSIE permettant de résoudre soit un problème métallique,
soit un problème impédant.
3 Perspectives envisagées
Nous envisageons à présent d’utiliser ces équations GCSIE pour implémenter une méthode par décomposition
de domaine bien conditionnée.
1Université Paris-Sud, Laboratoire de Mathématiques, bât. 425, 91405 Orsay, France
2ONERA Palaiseau, DEMR-SFM, Chemin de la Hunière, 91761 Palaiseau, France
3Ecole Polytechnique, CMAP, Route de Saclay, 91128 Palaiseau, France
1